Nombres complexes et analyse de Fourier

Introduction

Nous introduisons maintenant les principales définitions relatives aux séries de Fourier et à la transformation de Fourier. Les séries de Fourier vous seront utiles pour résoudre des équations aux dérivées partielles. La transformation de Fourier est utilisée en cristallographie et en chimie théorique. A la fin de cette semaine vous devez savoir :

  • Calculer le développement en série de Fourier trigonométrique d'une fonction

  • Calculer le développement en série de Fourier exponentielle d'une fonction

  • Calculer la transformée de Fourier d'une fonction

Ces calculs utilisent les nombres complexes.

PrécédentPrécédentSuivantSuivant
AccueilAccueilImprimerImprimer Dominique POQUILLON, Claude MIJOULE et Pascal FLOQUET, Éd. Ress. Pédag. Ouv. INPT, 1130 (2013) 24h Paternité - Partage des Conditions Initiales à l'IdentiqueRéalisé avec Scenari (nouvelle fenêtre)