Control of the model parameters

Opérateur observation
  • \(\underline x\): the model parameters to be fitted

  • \(\underline x^b\): an a priori knowledge of the parameters

  • \(\cal G\): the link between the model parameters and the observations

  • \(\underline y\): the observations simulated by the model

  • \(\underline y^o\): the measurements performed on the real system

\(\displaystyle J(\underline{x}) ={1\over 2} \left(\underline{x} - \underline{x}^b\right)^T \underline{\underline B}^{-1} \left(\underline{x} - \underline{x}^b\right)+ {1\over 2} \left[\underline{y}^o - {\cal G}(\underline{x})\right]^T \underline{\underline R}^{-1}\left[\underline{y}^o - {\cal G}(\underline{x})\right]\)

where

  • \(\underline{\underline B}\) is the background error covariance matrix

  • \(\underline{\underline R}\) is the observation error covariance matrix

  • \(\cal G\) is the observation operator

One can wish to control the vector of parameters \(\underline x\) of some model leading to the artificial observation \(\underline y = {\cal G} (\underline x)\) to be compared with real observation \(\underline y^o\).