Discrétisation d'un barreau élastique et passage au continu
Fondamental : Diaporama du micro-contenu (rafraichir la page si redimensionnée)
Texte légal : Polycopié du micro-contenu
Simulation : Programme Python
1
# -*- coding: utf-8 -*-
2
"""
3
Chaine continue
4
O. Thual, 21/08/2021
5
"""
6
7
# clear all
8
for iglob in list(globals().keys()):
9
if(iglob[0] != '_'):
10
exec('del {}'.format(iglob))
11
# import libraries
12
import numpy as np
13
import matplotlib.pyplot as plt
14
import os
15
16
17
def inifig(xaxe=0,yaxe=0,xlab='x',ylab='y'):
18
plt.figure(2)
19
plt.axvline(xaxe)
20
plt.axhline(yaxe)
21
plt.xticks(fontsize=12)
22
plt.yticks(fontsize=12)
23
plt.xlabel(xlab,fontsize=16 )
24
plt.ylabel(ylab,fontsize=16)
25
26
def zfi(x,le=2):
27
miss=le-len(str(x))
28
a='0'*miss+str(x)
29
return a
30
31
def animation(name):
32
a=np.linspace(0,L,N+1);
33
acont=np.linspace(0,L,501);
34
t=0;
35
dt=T/Nt
36
for i in range(0,Nt+1):
37
title=name+" i="+zfi(i)
38
titlefig=name
39
print(title)
40
fig=plt.figure(N,figsize=(7,4))
41
plt.xlabel('a',fontsize=16 )
42
plt.ylabel(r'Déplacement $\xi$',fontsize=16)
43
plt.title(titlefig,fontsize=16)
44
# signal
45
t=dt*i;
46
xi=signal(a,t)
47
xicont=signal(acont,t)
48
for dup in duprange:
49
plt.scatter(a+sc*xi,dup+0*xi,marker='o',color='blue',s=40)
50
plt.scatter(a,dup+0*xi,marker='o',color='red',s=20)
51
plt.plot(acont,xicont,color='black',linewidth=3)
52
#plt.scatter(a,xi,marker='o',color='black',s=40)
53
plt.xlim(0,L)
54
plt.ylim(ymin,ymax)
55
namei=name+zfi(i)+'.png';
56
plt.grid(color='black', axis='y', linestyle='-', linewidth=1)
57
plt.grid(color='black', axis='x', linestyle='-', linewidth=1)
58
plt.savefig(namei)
59
#plt.show()
60
plt.close()
61
gifanim="Anim"+name+".gif"
62
os.system('/opt/local/bin/convert -set delay '+delay+' '+name+'* '+gifanim);
63
os.system('rm '+name+'*');
64
65
# Main
66
F=False; T=True
67
68
def pulse(a,d):
69
al=0*a[a<-d]; ac=a[np.abs(a)<=d]; ar=0*a[a>d];
70
k=np.pi/d; fc=.5*(1+np.cos(k*ac));
71
f=np.concatenate((al,fc,ar))
72
return f
73
74
def statio(a,d):
75
k=np.pi/d; fc=.5*(1+np.cos(k*ac));
76
f=np.cos
77
return f
78
79
# Pulse
80
if T:
81
N=20; L=10; d=4; c=1;
82
T=(L+2*d)/c; Nt=20; sc=.9*L/N # scaling
83
k=np.pi/d;
84
ymin=-.2; ymax=1;
85
duprange=np.linspace(-.2,1,7)
86
delay="80"
87
# signal
88
def signal(a,t):
89
xi=pulse(a-c*t+d,d)
90
return xi
91
animation("Pulse")
92
93
# Progressive-cos
94
if F:
95
N=20; L=10; c=1;
96
Nt=20; sc=.9*L/N # scaling
97
k=np.pi/L; omega=k*c;
98
ymin=-1; ymax=1;
99
duprange=np.linspace(-1,1,9)
100
delay="20"
101
# signal
102
def signal(a,t):
103
xi=np.cos(n*k*(a-c*t))
104
return xi
105
for m in range(10,30,10):
106
n=m/10; T=2*L/(n*c); dt=T/Nt; T=T-dt;
107
print("Progressive-cos-10xn="+zfi(m))
108
animation("Progressive-cos-10xn="+zfi(m))
109
110
111
# Stationnaire-cos
112
if F:
113
N=20; L=10; c=1;
114
T=2*L/c; Nt=20; sc=.9*L/N # scaling
115
k=np.pi/L; omega=k*c;
116
ymin=-1; ymax=1;
117
duprange=np.linspace(-1,1,9)
118
delay="20"
119
# signal
120
def signal(a,t):
121
xi=np.cos(n*k*a)*np.cos(omega*t+np.pi/2)
122
return xi
123
for m in range(5,55,5):
124
print("Stationaire-sin-10xn="+zfi(m))
125
n=m/10; animation("Stationaire-cos-10xn="+zfi(m))
126
127
128
# Stationnaire-sin
129
if F:
130
N=20; L=10; c=1;
131
T=2*L/c; Nt=20; sc=.9*L/N # scaling
132
k=np.pi/L; omega=k*c;
133
ymin=-1; ymax=1;
134
duprange=np.linspace(-1,1,9)
135
delay="20"
136
# signal
137
def signal(a,t):
138
xi=np.sin(n*k*a)*np.cos(omega*t+np.pi/2)
139
return xi
140
#for m in np.linspace(5,50,11):
141
for m in range(5,55,5):
142
print("Stationaire-sin-10xn="+zfi(m))
143
n=m/10; animation("Stationaire-sin-10xn="+zfi(m))
144