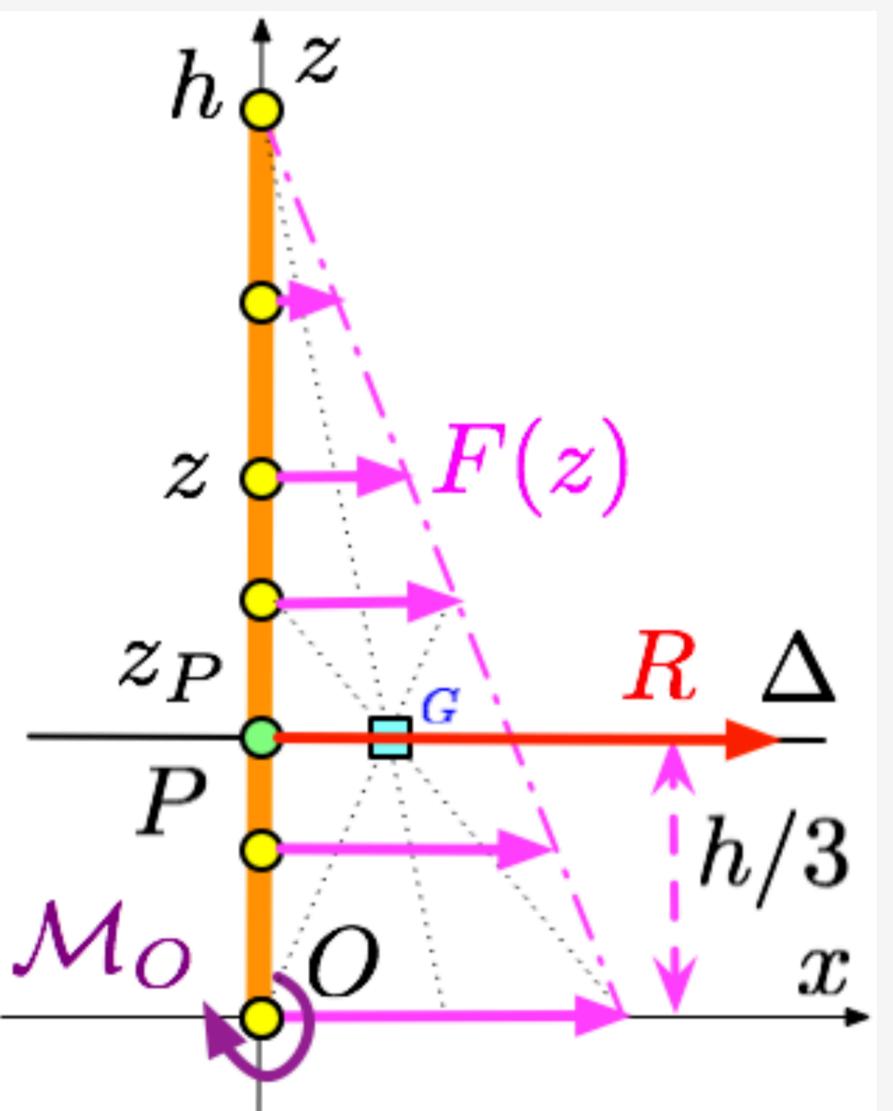
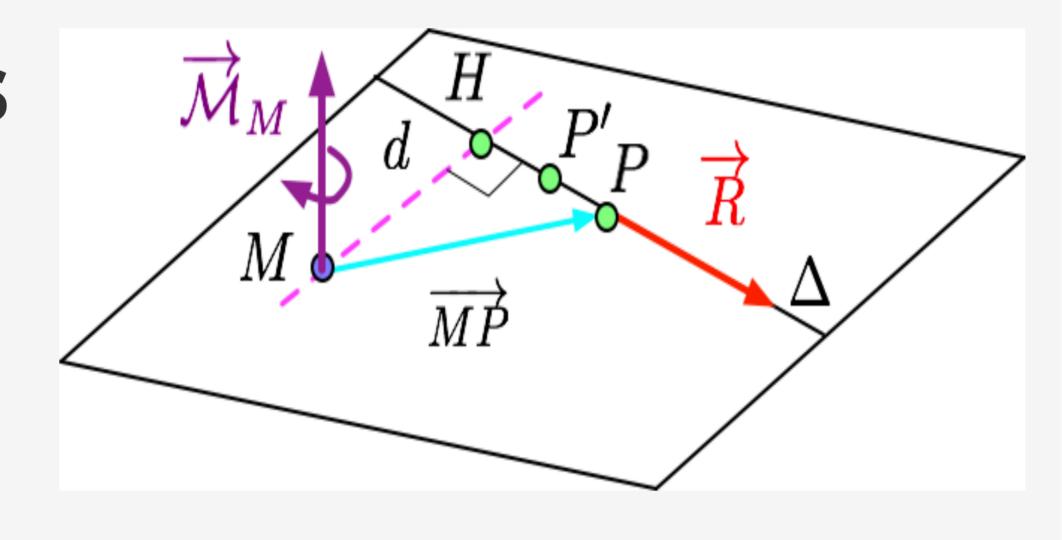
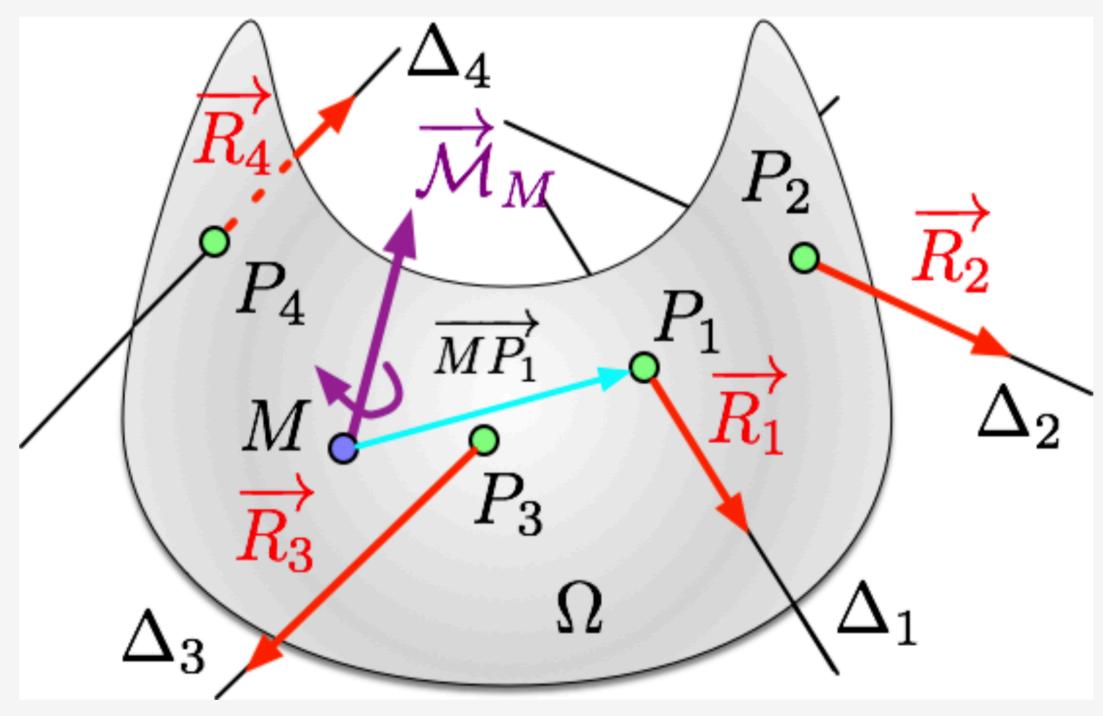
Point d'application d'un système de forces

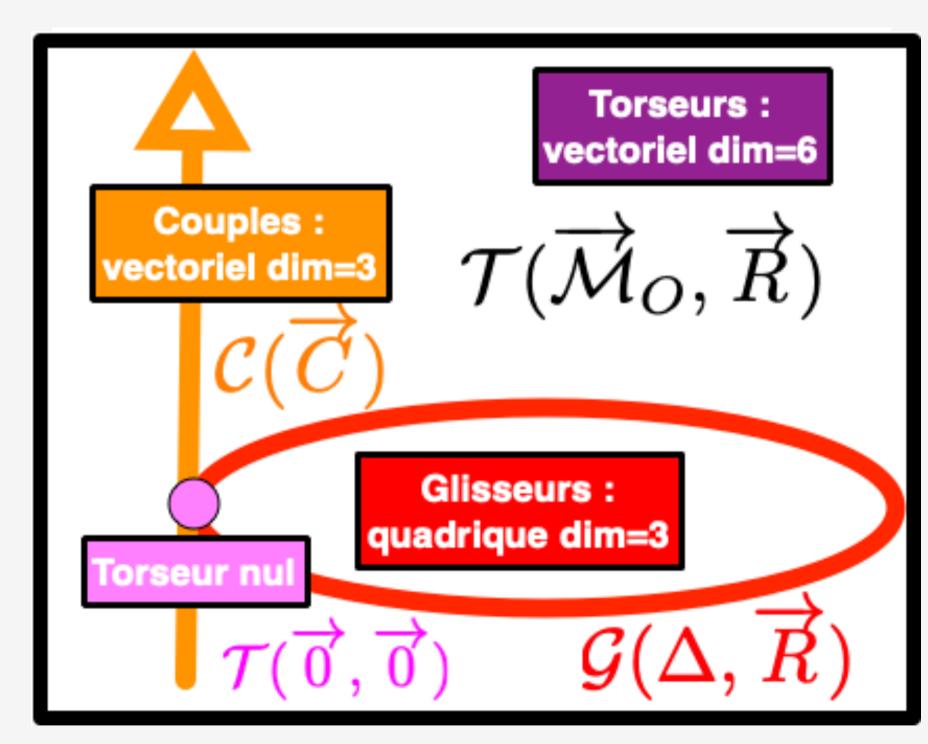


Olivier THUAL, Toulouse INP

Janvier 2025







Force simple sur un barreau

On considère un barreau solide de longueur h et d'axe Oz. On lui applique un force $\mathcal{F}(P,R)$ de point d'application P et d'intensité R dans la direction de la droite $\Delta(P)$ passant par P et parallèle à l'axe Ox.

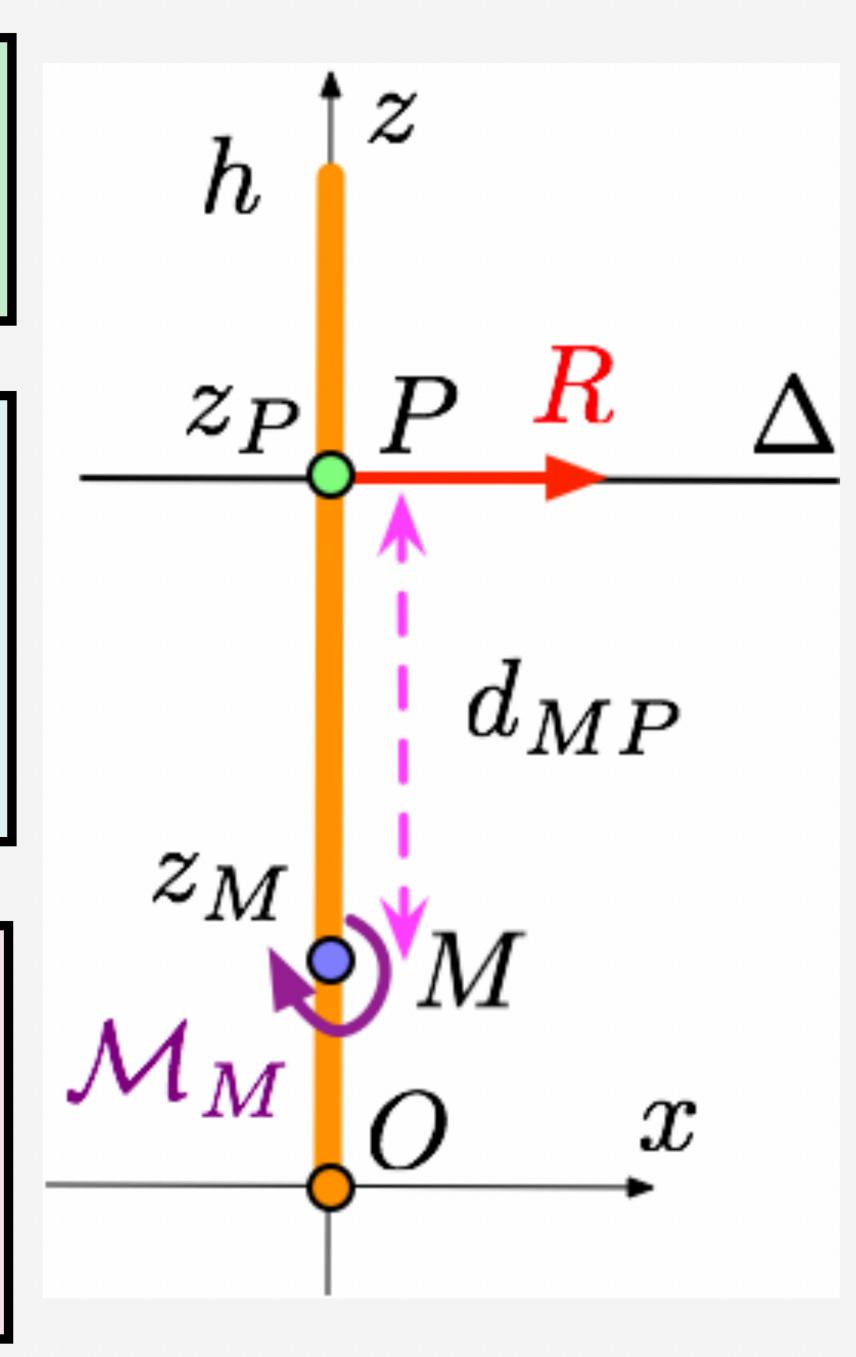
Le moment \mathcal{M}_M de la force $\mathcal{F}(P,R)$ par rapport à un point M quelconque du barreau solide est défini par :

$$\mathcal{M}_M = d_{MP} R$$
 avec $d_{MP} = z_P - z_M$,

où z_M et z_P sont les coordonées des points M et P le long de l'axe Oz.

On modélise l'action de la force $\mathcal{F}(P,R)$ de point d'application P et d'intensité R par sa "propension à vouloir faire tourner" le barreau solide autour d'un point M quelconque. On la représente donc comme l'application suivante :

$$M \longmapsto \mathcal{M}_M = (z_P - z_M) R$$
.



Point d'application de deux forces parallèles

On applique au barreau solide les deux forces $\mathcal{F}_1(P_1,R_1)$ et $\mathcal{F}_2(P_2,R_2)$ de points d'application P_1 et P_2 et d'intensités R_1 et R_2 dans des directions parallèles à l'axe Ox.

On modélise l'action de la somme de ces deux forces par l'application qui associe à tout point M la somme de leurs moments :

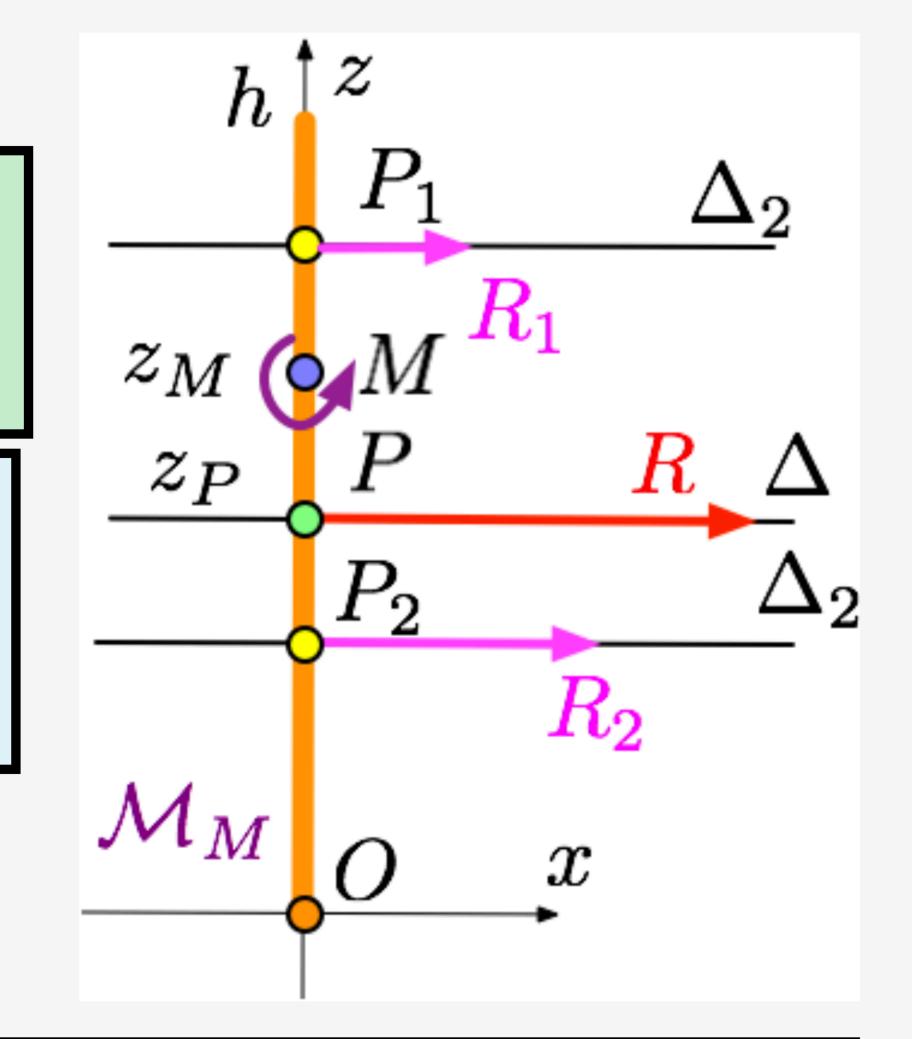
$$M \longmapsto \mathcal{M}_M = (z_{P_1} - z_M) R_1 + (z_{P_2} - z_M) R_2$$
.

Il existe un point P de coordonnée z_p dont le moment est nul :

$$\mathcal{M}_{P} = (z_{P_{1}} - z_{P})R_{1} + (z_{P_{2}} - z_{P})R_{2} = 0$$

$$\implies z_{P} = \frac{z_{P_{1}}R_{1} + z_{P_{2}}R_{2}}{R_{1} + R_{2}}$$

Le point P est le barycentre des points P_1 et P_2 affectés des poids R_1 et R_2 .



La somme des deux forces est équivalente à l'action, sur le barreau solide, d'un force $\mathcal{F}(P,R)$ de point d'application P et d'intensité $R=R_1+R_2$. En effet, on montre facilement la relation :

$$\mathcal{M}_M = (z_P - z_M) R.$$

Point d'application d'un continuum de forces

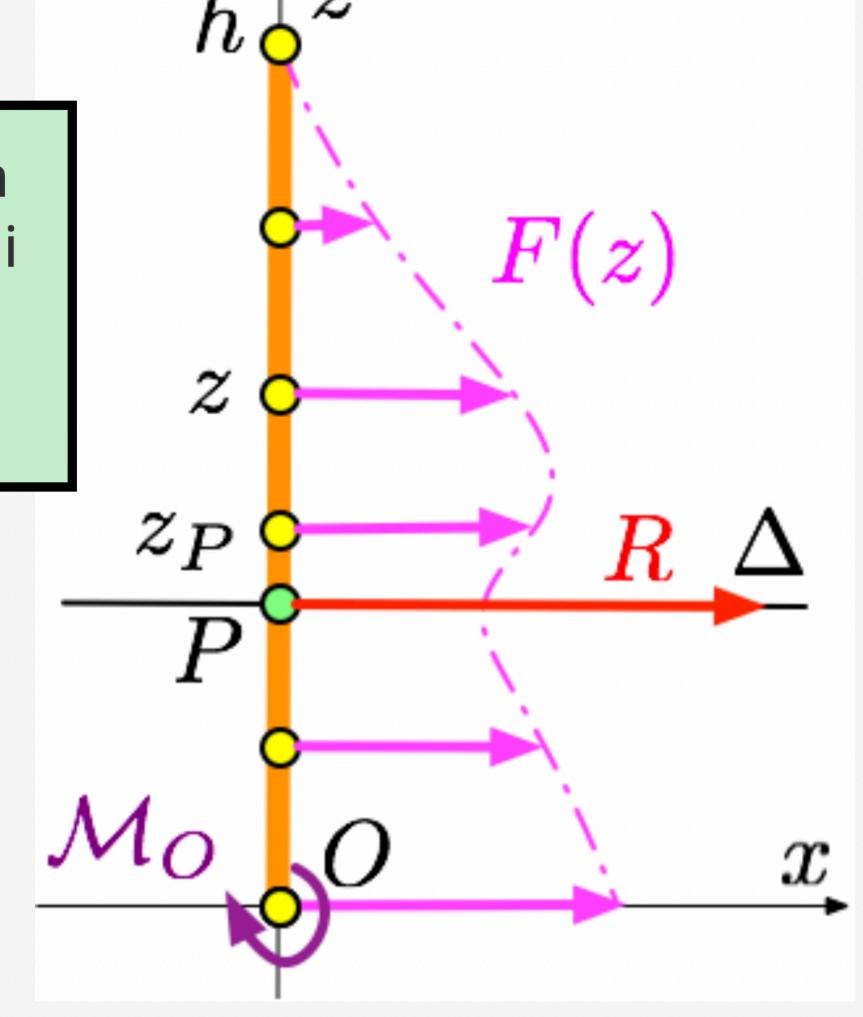
On applique une densité linéique de forces $\mathcal{F}[z,F(z)]$ de même direction Ox. On modélise l'action de ce système de forces sur le barreau solide par l'application qui associe à tout point M le moment $\mathcal{M}_M = \int_0^h (z-z_M)F(z)dz$.

Il existe un point P de coordonnée z_p dont le moment est nul :

$$\mathcal{M}_P = \int_0^h (z - z_P) F(z) \, dz = 0 \implies$$

$$z_P = \frac{1}{R} \int_0^h z F(z) dz \text{ avec } R = \int_0^h F(z) dz.$$

Le point P est le barycentre des points du barreau, affectés des poids F(z).



La densité de forces est équivalente à l'action, sur le barreau solide, d'un force $\mathcal{F}(P,R)$ de point d'application P et d'intensité R. En effet, on montre facilement la relation $\mathcal{M}_M=(z_P-z_M)\,R$.

Continuum de forces linéaire

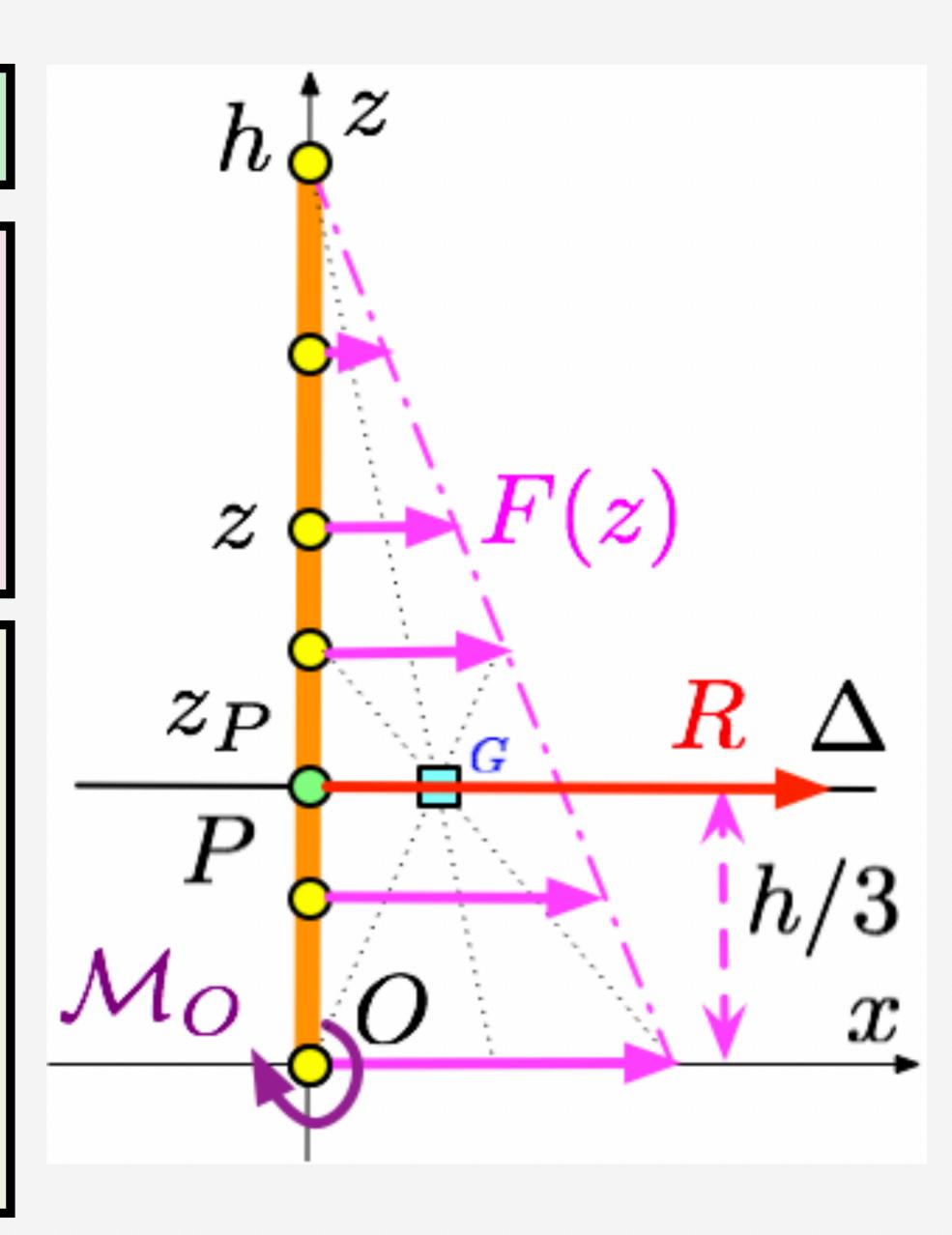
On suppose ici que le continuum de forces $F(z) = F_0(h-z)$ est linéaire.

La résultante des forces est

$$R = \int_0^h F(z)dz = \int_0^h F_0(h-z)dz = F_0 \left[hz - \frac{hz^2}{2} \right]_0^h = \frac{F_0h^2}{2}.$$

La coordonnée z_p du point d'application est donnée par

$$z_{P} = \frac{1}{R} \int_{0}^{h} z F(z) dz = \frac{F_{0}}{R} \int_{0}^{h} z (h - z) dz$$
$$= \frac{F_{0}}{R} \left[\frac{hz^{2}}{2} - \frac{z^{3}}{3} \right]_{0}^{h} = \frac{F_{0}}{R} \frac{h^{3}}{6} = \frac{h}{3}.$$



Le point P est situé au tiers de la hauteur du triangle des forces, dont le barycentre est le point G.

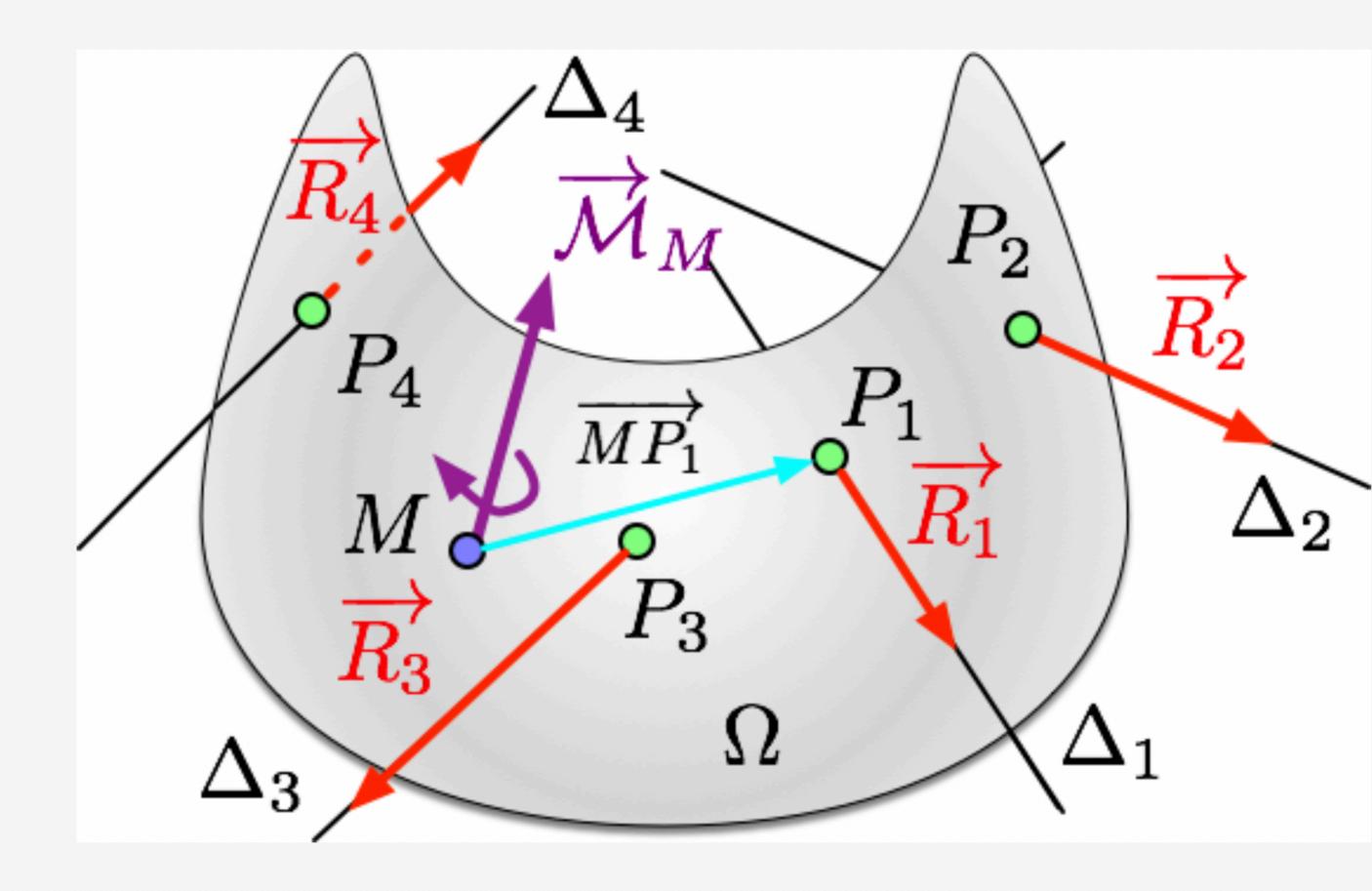
Modélisation des systèmes de forces agissant sur un solide

On considère un solide Ω soumis à un système de forces de N points d'application P_i et d'intensités R_i pour $i=1,\ldots,N$. On note Δ_i les droites $\Delta(P_i,R_i)$.

On modélise ce système de force par sa "propension à faire tourner un solide autour d'un point M" quelconque, et donc par l'application qui associe à tout point M le moment $\mathcal{M}_{\mathcal{M}}$ des toutes les forces en ce point :

$$M \longmapsto \overrightarrow{\mathcal{M}}_M$$

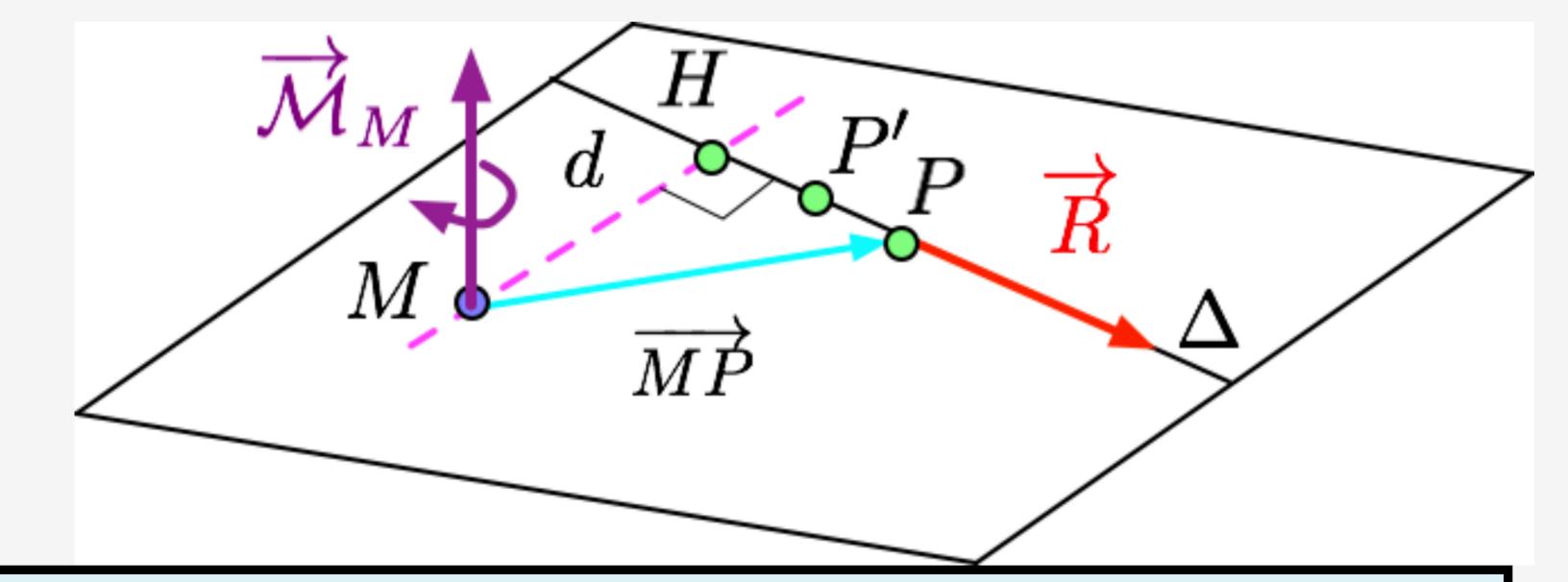
Une telle application est appellé "torseur" et possède des propriétés très particulières que nous allons examiner. Mais commençons par définir le moment d'une force par rapport à un point.



Moment d'une force simple par rapport à un point

On considère une force $\mathcal{F}(P, \overrightarrow{R})$ de point d'application P est d'intensité \overrightarrow{R} . On modélise son action sur un solide par l'application :

$$M \longmapsto \overrightarrow{\mathcal{M}}_M = \overrightarrow{MP} \wedge \overrightarrow{R}$$
.



En utilisant les propriétés du produit vectoriel, \mathcal{M}_M est un vecteur de module $||\mathcal{M}_M|| = d \, || \, R \, ||$, où d est la distance de M à la droite $\Delta(P, \, R)$. La direction du moment est perpendiculaire au plan engendré par les vecteurs \overrightarrow{MP} et \overrightarrow{R} . Sa direction est obtenue en indiquant que le repère $(\overrightarrow{MP}, \, \overrightarrow{R}, \, \overrightarrow{\mathcal{M}_M})$ est direct.

On remarque que pour tout point P' de la droite $\Delta(P, \overrightarrow{R})$ la force $\mathcal{F}(P', \overrightarrow{R})$ conduit aux mêmes moments $\overrightarrow{\mathcal{M}}_M = \overrightarrow{MP'} \wedge \overrightarrow{R} = \overrightarrow{MP} \wedge \overrightarrow{R}$ puisque $\overrightarrow{PP'} \wedge \overrightarrow{R} = \overrightarrow{0}$. On appelle alors "glisseur" $\mathcal{G}(\Delta, \overrightarrow{R})$ l'application qui associe à tout point M le moment $\overrightarrow{\mathcal{M}}_M = \overrightarrow{MP} \wedge \overrightarrow{R}$ où P est un point quelconque de la droite Δ .

Modélisation des systèmes de forces agissant sur un solide

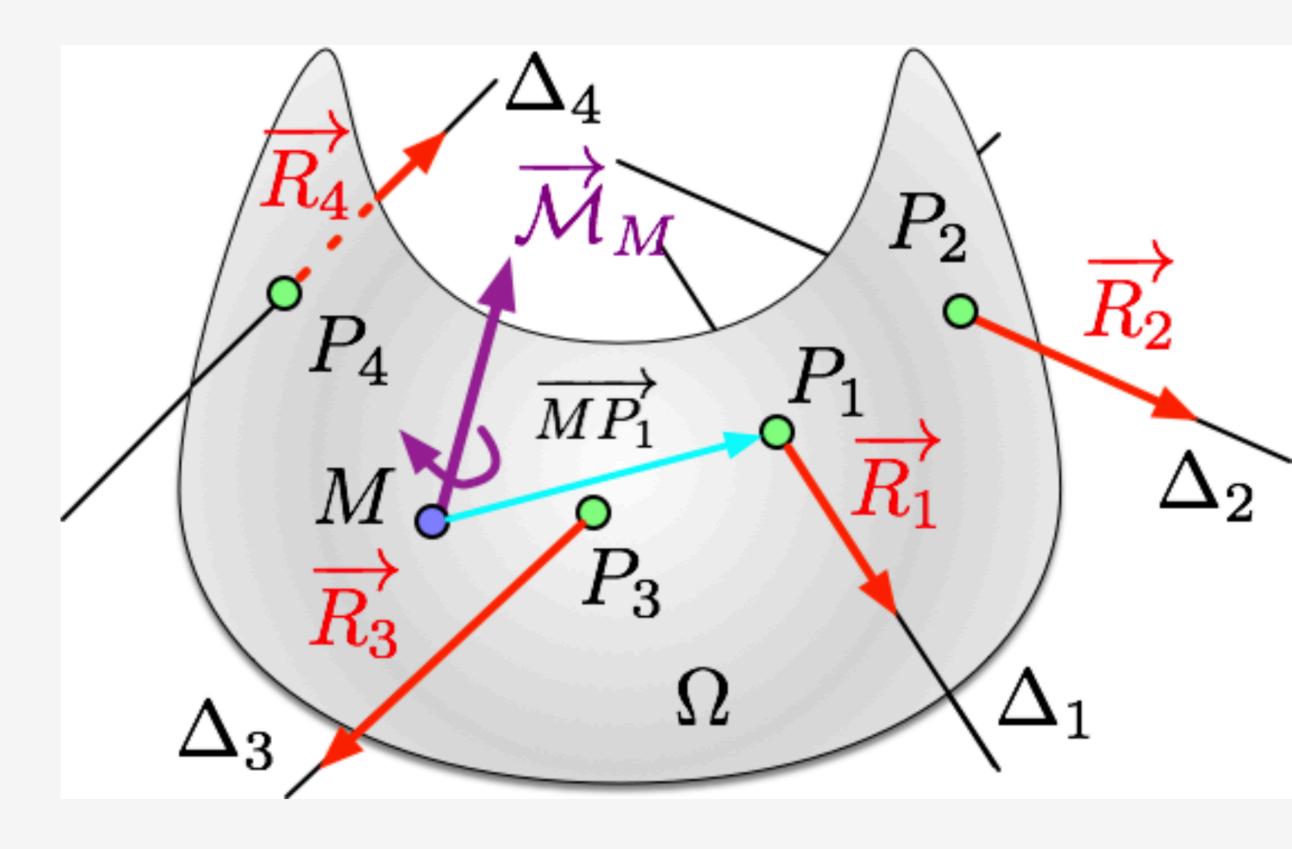
Le moment en un point M d'un système de forces de N glisseurs $\mathcal{G}(\Delta_i, R_i)$ s'obtient en choisissant au hasard des points P_i sur les droites Δ_i et en écrivant $\overrightarrow{\mathcal{M}}_M = \sum_{i=1}^N \overrightarrow{MP_i} \wedge \overrightarrow{R_i}$.

L'application $M \longmapsto \mathring{\mathcal{M}}_M$ ainsi obtenue est un torseur, qui vérifie, pour tous points A et B, la propriété

$$\overrightarrow{\mathcal{M}}_A = \overrightarrow{\mathcal{M}}_B + \overrightarrow{AB} \wedge \overrightarrow{R}$$
 avec $\overrightarrow{R} = \sum_{i=1}^N \overrightarrow{R_i}$.

On appelle "torseur" toute application qui vérifie cette propriété. En choisissant un point O quelconque, on note alors $\overrightarrow{\mathcal{T}(\mathcal{M}_O,R)}$ un torseur que l'on définit par la relation

$$M \longmapsto \overrightarrow{\mathcal{M}}_M = \overrightarrow{\mathcal{M}}_O + \overrightarrow{MO} \wedge \overrightarrow{R}$$
.

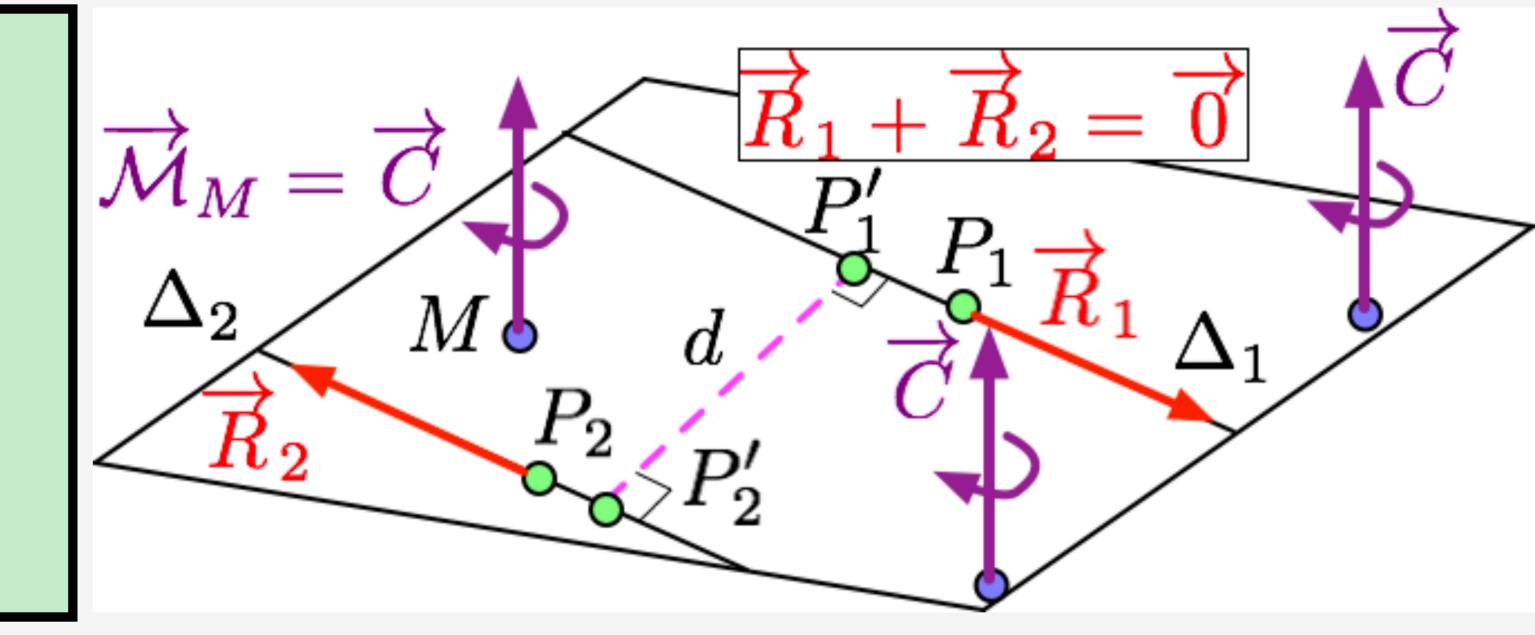


Un torseur particulier: le couple

La somme de deux glisseurs $\mathcal{G}(\Delta_1, \overrightarrow{R_1})$ et $\mathcal{G}(\Delta_2, \overrightarrow{R_2})$ tels que $\overrightarrow{R} = \overrightarrow{R_1} + \overrightarrow{R_2} = \overrightarrow{0}$ est le torseur

$$M \longmapsto \overrightarrow{\mathcal{M}}_M = \overrightarrow{MP_1} \wedge \overrightarrow{R_1} + \overrightarrow{MP_2} \wedge \overrightarrow{R_2},$$

où P_1 et P_2 sont deux points que l'on peut choisir au hasard sur les droites Δ_1 et Δ_2 .



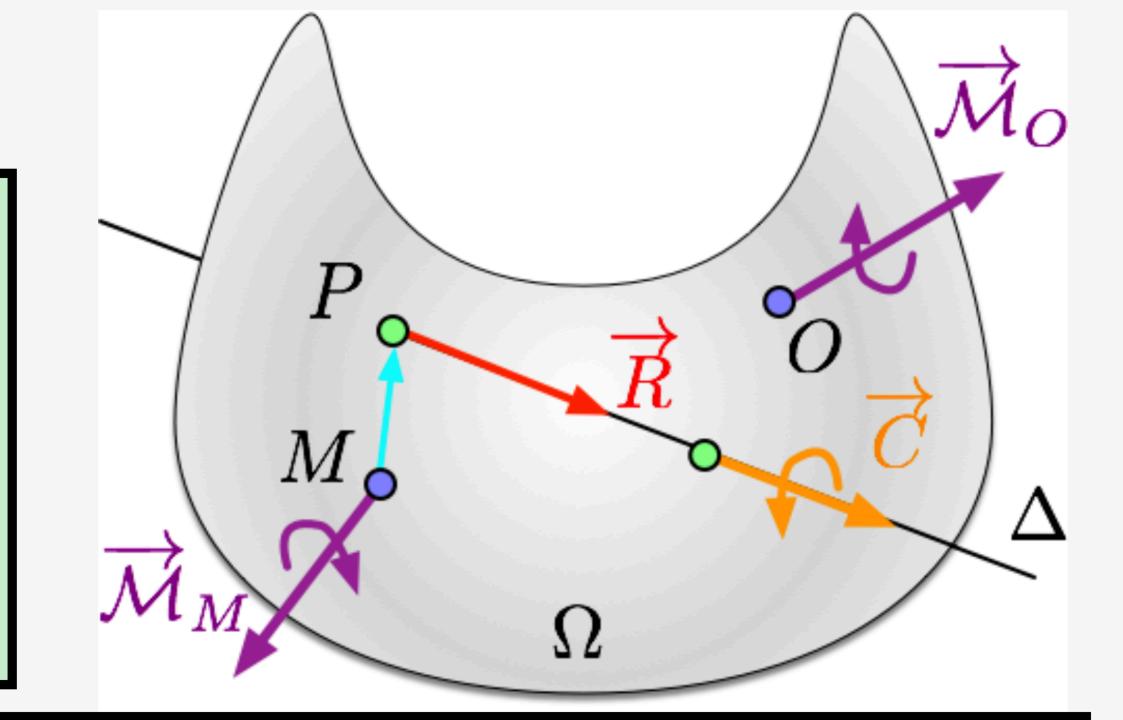
Comme $\overrightarrow{\mathcal{M}}_A = \overrightarrow{\mathcal{M}}_B + \overrightarrow{AB} \wedge \overrightarrow{R}$, le couple est une application constante $M \longmapsto \overrightarrow{\mathcal{M}}_M = \overrightarrow{C}$ avec

$$\overrightarrow{C} = (\overrightarrow{MP_2} + \overrightarrow{P_2P_1}) \wedge \overrightarrow{R_1} + \overrightarrow{MP_2} \wedge (-\overrightarrow{R_1}) = \overrightarrow{P_1P_2} \wedge \overrightarrow{R_1} = \overrightarrow{P_2P_1} \wedge \overrightarrow{R_2} = \overrightarrow{P_1'P_2'} \wedge \overrightarrow{R_1} = \overrightarrow{P_2'P_1'} \wedge \overrightarrow{R_2}$$

où P_1' et P_2' sont des points des droites Δ_1 et Δ_2 tels que $P_2'P_1'$ est perpendiculaire à la direction commune des ces droites. Le couple \overrightarrow{C} est donc un vecteur perpendiculaire au plan engendré par les deux droites et son module est $||\overrightarrow{C}|| = d||\overrightarrow{R_1}|| = d||\overrightarrow{R_2}||$ avec $d = ||\overrightarrow{P_1'P_2'}||$. On note $C(\overrightarrow{C})$ ce torseur couple.

Les torseurs "tire-bouchon"

On considère un torseur $\mathcal{T}(\overrightarrow{\mathcal{M}}_O, \overrightarrow{R})$ qui est la somme du glisseur $\mathcal{G}(\Delta, \overrightarrow{R})$ et du couple $\mathcal{C}(\overrightarrow{C})$ tel que \overrightarrow{R} et \overrightarrow{C} sont parallèles. L'action sur un solide Ω est : on pousse une force d'intensité $||\overrightarrow{R}||$ le long de la droite Δ tout en tournant autour de cette droite avec le couple d'intensité $||\overrightarrow{C}||$, comme lorsque l'on visse un tire-bouchon.



On montre que tout $\overrightarrow{\mathcal{T}(\mathcal{M}_O, \overrightarrow{R})}$ est un torseur "tire-bouchon". En effet, on définit le point P par la relation :

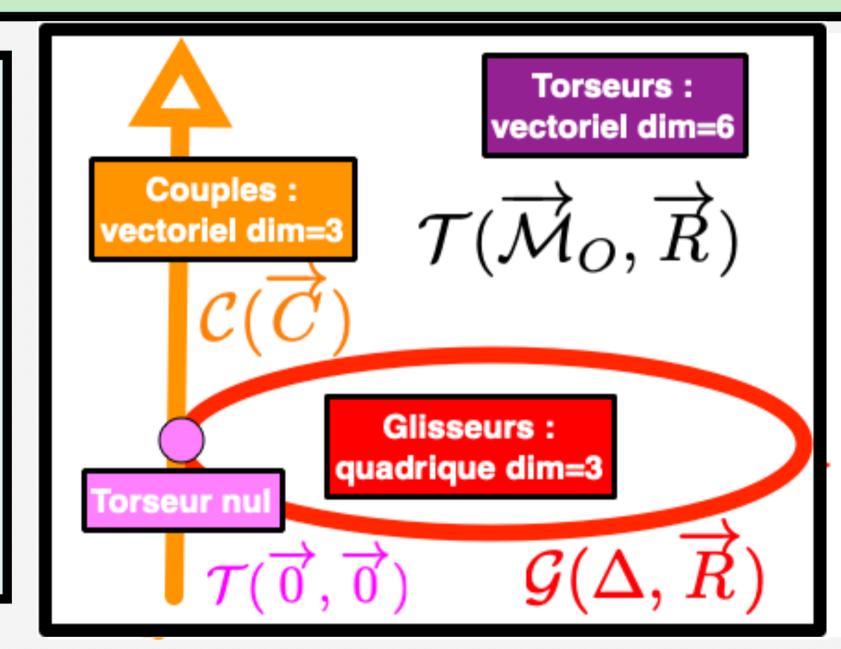
$$\overrightarrow{OP} = \frac{\overrightarrow{R} \wedge \overrightarrow{\mathcal{M}}_O}{\overrightarrow{R}^2} \implies \overrightarrow{\mathcal{M}}_P - \overrightarrow{\mathcal{M}}_0 = \overrightarrow{PO} \wedge \overrightarrow{R} = \overrightarrow{R} \wedge \frac{\overrightarrow{R} \wedge \overrightarrow{\mathcal{M}}_O}{\overrightarrow{R}^2} = \frac{\overrightarrow{R} \cdot \overrightarrow{\mathcal{M}}_O}{\overrightarrow{R}^2} \overrightarrow{R} - \overrightarrow{\mathcal{M}}_O$$

On a donc $\overrightarrow{\mathcal{M}}_P = \left(\overrightarrow{R} \cdot \overrightarrow{\mathcal{M}}_O / \overrightarrow{R}^2\right) \overrightarrow{R} = \overrightarrow{C}$ que l'on peut peut voir comme un couple $\mathcal{C}(\overrightarrow{C})$ parallèle à la résultante \overrightarrow{R} du glisseur $\mathcal{G}[\Delta(P,\overrightarrow{R}),\overrightarrow{R}]$. Comme $\overrightarrow{\mathcal{M}}_M = \overrightarrow{\mathcal{M}}_P + \overrightarrow{MP} \wedge \overrightarrow{R} = \overrightarrow{C} + \overrightarrow{MP} \wedge \overrightarrow{R}$ on voit que le torseur \mathcal{T} est la somme du couple \mathcal{C} et du glisseur \mathcal{G} , et donc un torseur "tire-bouchon".

Conclusion: l'espace vectoriel

Les torseurs sont donc des applications $M \longmapsto \mathring{\mathcal{M}}_M$ caractérisées par la relation $\overline{\mathring{\mathcal{M}}_A} = \overline{\mathring{\mathcal{M}}_B} + \overline{\mathring{AB}} \wedge \overline{\mathring{R}}$ pour tout couple de point (A, B). Ils modélisent l'action d'un système de forces sur un solide car le moment \mathcal{M}_M traduit la "propension à faire tourner le solide autour d'un point M".

L'ensemble des torseurs $\mathcal{T}(\dot{\mathcal{M}}_O,\,\dot{R})$ forme un espace vectoriel de dimension 6 : choix de $\hat{\mathcal{M}}_O$ et choix de \hat{R} . Les couples $\mathcal{C}(\overrightarrow{C})$ forment un sous-espace vectoriel de dimension 3 : choix de $oldsymbol{C}$. Enfin, les glisseurs $\mathcal{G}(\Delta,\,R)$ forment une quadrique de dimension 3 : choix d'un point P à qui l'on affecte un moment nul et choix d'un vecteur \hat{R} .



Pour tout torseur ${\mathcal T}$ de résultante R, il existe une droite unique Δ et un couple unique $\mathcal{C}(C)$ dans la direction de Δ , tel que $\mathcal{T} = \mathcal{C}(\overrightarrow{C}) + \mathcal{G}(\Delta, \overrightarrow{R})$

La généralisation du système de forces perpendiculaires à un barreau remplace le point d'application par une "droite d'application" et complète l'action de la résultante par un couple, ces deux vecteurs étant parallèles à la droite.