8

1-3 Correction du devoir semaine 1

1-3.1 Exercice 1c - Sous espaces vectoriels supplémentaires

Soit
$$E = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4, \left\{ \begin{array}{c} x+z=0 \\ y-2t=0 \end{array} \right\} \right.$$

- 1. Vérifions que E est un sous espace vectoriel de \mathbb{R}^4 :
 - E est non vide car le vecteur nul $\mathbf{0}$ appartient à E
 - Soit $\mathbf{u_1} = (x_1, y_1, z_1, t_1)$ et $\mathbf{u_2} = (x_2, y_2, z_2, t_2)$ deux vecteurs de E et λ un réel, on a :

$$\begin{cases} x_1 + z_1 = 0 \\ y_1 - 2t_1 = 0 \end{cases} \text{ et } \begin{cases} x_2 + z_2 = 0 \\ y_2 - 2t_2 = 0 \end{cases}$$

Donc:

$$\begin{cases} x_1 + z_1 + \lambda(x_2 + z_2) = 0 \\ y_1 - 2t_1 + \lambda(y_2 - 2t_2) = 0 \end{cases} \Leftrightarrow \begin{cases} (x_1 + \lambda x_2) + (z_1 + \lambda z_2) = 0 \\ (y_1 + \lambda y_2) - 2(t_1 + \lambda t_2) = 0 \end{cases}$$

Le vecteur $\mathbf{u_1} + \lambda \mathbf{u_2}$ appartient donc à E.

Déterminons une base de E.

Soit $\mathbf{u} = (x, y, z, t)$ un élément de E on a :

$$\left\{ \begin{array}{l} x+z=0 \\ y-2t=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} z=-x \\ y=2t \end{array} \right.$$

Donc

$$\mathbf{u} = \begin{pmatrix} x \\ 2t \\ -x \\ t \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

Il est évident que les deux vecteurs $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ et $\mathbf{j} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$ sont indépendants.

Ils constituent une base de E, et dim E=2.

2. Appelons $\mathbf{k} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ et $\mathbf{l} = \begin{pmatrix} 0 \\ 1 \\ a \\ a \end{pmatrix}$. $\{\mathbf{k}, \mathbf{l}\}$ est une base de F.

Pour que les espaces vectoriels E et F soient supplémentaires, il faut et il suffit

que $\{i, j, k, l\}$ soit une base de \mathbb{R}^4 , c'est à dire, dans ce cas, que $\{i, j, k, l\}$ soit une famille libre.

Soient $\alpha, \beta, \gamma, \delta$ quatre réels, supposons que $\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k} + \delta \mathbf{l} = \mathbf{0}$, on obtient :

$$\begin{cases} \alpha + \gamma = 0 \\ 2\beta + \delta = 0 \\ -\alpha + a\delta = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha = -\gamma = a\delta \\ \beta = (1 - a)\delta \\ (2a - 1)\delta = 0 \end{cases}$$

- Si $a \neq \frac{1}{2}$ ce système admet pour unique solution $\alpha = \beta = \gamma = \delta = 0$. La famille $\{\tilde{\mathbf{i}}, \tilde{\mathbf{j}}, \mathbf{k}, \mathbf{l}\}$ est donc une base de \mathbb{R}^4 et E et F sont deux sous espaces supplémentaires.
- Si $a = \frac{1}{2}$ ce système admet une infinité de solutions différentes de (0,0,0,0). La famille $\{i, j, k, l\}$ n'est pas une base de \mathbb{R}^4 . E et F ne sont donc pas supplémentaires.

1 - 3.2Exercice 2c - Base d'un espace vectoriel

1. On a : $\mathbf{w} = \mathbf{u} - 2\mathbf{v}$. La famille $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ n'est donc pas libre. $E_1 = Vect\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ et $\mathbf{w} = \mathbf{u} - 2\mathbf{v}$, on peut donc enlever \mathbf{w} de la famille $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ et la famille $\{\mathbf{u}, \mathbf{v}\}$ est donc génératrice de E_1 .

De plus $\lambda \mathbf{u} + \mu \mathbf{v} = \mathbf{0}$ s'écrit : $(2\lambda - \mu, \lambda, \mu) = (0, 0, 0)$,

ou encore $\{2\lambda - \mu = 0, \lambda = 0, \mu = 0\}$ ce qui est équivalent à $\lambda = \mu = 0$.

La famille $\{\mathbf{u}, \mathbf{v}\}$ est donc libre

La famille $\{\mathbf{u}, \mathbf{v}\}$ est donc une base de E_1 et donc dim $E_1 = 2$.

On peut écrire : $E_1 = \{ \lambda \mathbf{u} + \mu \mathbf{v}, \lambda \in \mathbb{R}, \mu \in \mathbb{R} \}$, ou encore :

$$E_1 = \{(2\lambda - \mu, \lambda, \mu), \lambda \in \mathbb{R}, \mu \in \mathbb{R}\}\$$

- 2. E_2 est un sous ensemble de \mathbb{R}^3 .
 - (a) E_2 est non vide, en effet $(0,0,0) \in E_2$

Soient λ et μ deux réels, $\mathbf{t} = (0, \alpha + \beta, -\beta)$ et $\mathbf{t}' = (0, \alpha' + \beta', -\beta')$ deux éléments de E_2

On calcule
$$\lambda \mathbf{t} + \mu \mathbf{t}' = (0, \lambda(\alpha + \beta) + \mu(\alpha' + \beta'), -\lambda\beta - \mu\beta')$$

Donc $\lambda \mathbf{t} + \mu \mathbf{t}' = (0, (\lambda\alpha + \mu\alpha') + (\lambda\beta + \mu\beta'), -(\lambda\beta + \mu\beta'))$

Donc $\lambda \mathbf{t} + \mu \mathbf{t}' \in E_2$

 E_2 est non vide et stable par combinaison linéaire. E_2 est donc un s.e.v. de \mathbb{R}^3 .

Soit $\mathbf{t} = (0, \alpha + \beta, -\beta)$ un élément de E_2

On obtient : $(0, \alpha + \beta, -\beta) = \alpha(0, 1, 0) + \beta(0, 1, -1)$

On note $\mathbf{a}(0,1,0)$ et $\mathbf{b}(0,1,-1)$. La famille $\{\mathbf{a},\mathbf{b}\}$ est donc génératrice de E_2 . Cette famille est libre (idem 1.). Donc $\{\mathbf{a},\mathbf{b}\}$ est une base de E_2 et dim $E_2=2$.

(b) $E_1 + E_2$ est un s.e.v. de \mathbb{R}^3 (dim $E_1 + E_2 \leq 3$ $E_1 + E_2$ est engendré par la famille $\{\mathbf{u}, \mathbf{v}, \mathbf{a}, \mathbf{b}\}$ dont on peut extraire la famille $\{\mathbf{u}, \mathbf{v}, \mathbf{a}\}$ qui est libre. En effet : supposons qu'il existe λ, μ, ν réels tels que

 $\lambda \mathbf{u} + \mu \mathbf{v} + \nu \mathbf{a} = \mathbf{0}$, on obtient le système : $\begin{cases} 2\lambda - \mu = 0 \\ \lambda + \nu = 0 \end{cases}$ qui admet comme $\mu = 0$

solution unique $\lambda = \mu = \nu = 0$.

La famille $\{\mathbf{u}, \mathbf{v}, \mathbf{a}\}$ est donc une base de $E_1 + E_2$ et donc dim $E_1 + E_2 = 3$. (On peut en déduire que $E_1 + E_2 = \mathbb{R}^3$)

(c) Dans la base canonique $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ de \mathbb{R}^3 , on écrit : $\left\{ \begin{array}{l} \mathbf{u}=2\mathbf{e}_1+\mathbf{e}_2\\ \mathbf{v}=-\mathbf{e}_1+\mathbf{e}_3\\ \mathbf{a}=\mathbf{e}_2 \end{array} \right.$, on

 $\mathrm{obtient}: \left\{ \begin{array}{c} e_1 = \frac{1}{2}u - \frac{1}{2}a \\ e_2 = a \\ e_3 = \frac{1}{2}u + v - \frac{1}{2}a \end{array} \right.$

Donc les coordonnées de $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ dans la base $\{\mathbf{u}, \mathbf{v}, \mathbf{a}\}$ sont :

$$\mathbf{e}_1 = (\frac{1}{2}, 0, -\frac{1}{2}) \; ; \; \mathbf{e}_2 = (0, 0, 1) \; ; \; \mathbf{e}_3 = (\frac{1}{2}, 1, -\frac{1}{2})$$

1-3.3 Exercice 3c - Matrice d'une application linéaire

1. \mathbb{R}^3 étant de dimension 3, toute famille libre de trois vecteurs est une base de \mathbb{R}^3 . Il suffit donc de vérifier que $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ est une famille libre.

Supposons qu'il existe λ,μ,ν réels tels que : $\lambda \mathbf{u} + \mu \mathbf{v} + \nu \mathbf{w} = \mathbf{0}$

on obtient le système :
$$\begin{cases} \lambda - \mu + 2\nu = 0 \\ \mu + \nu = 0 \\ \lambda + \nu = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\nu \\ \mu = -\nu \\ 2\nu = 0 \end{cases}$$

qui admet comme solution unique $\lambda = \mu = \nu = 0$.

La famille $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ est donc une base de \mathbb{R}^3 .

- 2. \mathbb{R}^4 est muni de la base canonique
 - (a) Pour obtenir la matrice **A** représentant f lorsque \mathbb{R}^3 est muni de la base $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, on exprime $f(\mathbf{u}), f(\mathbf{v}), f(\mathbf{w})$ dans la base canonique de \mathbb{R}^4 . Donc :

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & -1 \end{array}\right)$$

(b) La matrice \mathbf{A}' représentant f lorsque \mathbb{R}^3 est muni de la base canonique $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ est donnée par l'expression de $f(\mathbf{e}_1), f(\mathbf{e}_2), f(\mathbf{e}_3)$ dans la base canonique de \mathbb{R}^4 .

On exprime d'abord $\ \mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$ en fonction de $\mathbf{u},\mathbf{v},\mathbf{w}$:

$$\begin{cases} \mathbf{u} = \mathbf{e}_1 + \mathbf{e}_3 \\ \mathbf{v} = -\mathbf{e}_1 + \mathbf{e}_2 \\ \mathbf{w} = 2\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 \end{cases} \Leftrightarrow \begin{cases} \mathbf{e}_3 = \mathbf{u} - \mathbf{e}_1 \\ \mathbf{e}_2 = \mathbf{v} + \mathbf{e}_1 \\ 2\mathbf{e}_1 = \mathbf{w} - \mathbf{u} - \mathbf{v} \end{cases}$$

On obtient:

$$\begin{cases} \mathbf{e}_1 = -\frac{1}{2}\mathbf{u} - \frac{1}{2}\mathbf{v} + \frac{1}{2}\mathbf{w} \\ \mathbf{e}_2 = -\frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v} + \frac{1}{2}\mathbf{w} \\ \mathbf{e}_3 = \frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{v} - \frac{1}{2}\mathbf{w} \end{cases}$$

On calcule ensuite $f(\mathbf{e}_1), f(\mathbf{e}_2), f(\mathbf{e}_3)$, on obtient :

$$\begin{cases} f(\mathbf{e}_1) = -\frac{1}{2}f(\mathbf{u}) - \frac{1}{2}f(\mathbf{v}) + \frac{1}{2}f(\mathbf{w}) \\ f(\mathbf{e}_1) = -\frac{1}{2}f(\mathbf{u}) + \frac{1}{2}f(\mathbf{v}) + \frac{1}{2}f(\mathbf{w}) \\ f(\mathbf{e}_1) = \frac{3}{2}f(\mathbf{u}) + \frac{1}{2}f(\mathbf{v}) - \frac{1}{2}f(\mathbf{w}) \end{cases}$$

Soit, dans la base canonique de \mathbb{R}^4 :

$$f(\mathbf{e}_1) = \begin{pmatrix} 0 \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, \ f(\mathbf{e}_2) = \begin{pmatrix} -1 \\ -\frac{1}{2} \\ -\frac{3}{2} \\ -\frac{1}{2} \end{pmatrix}, \ f(\mathbf{e}_3) = \begin{pmatrix} 1 \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$$

Donc:

$$\mathbf{A}' = \begin{pmatrix} 0 & -1 & 1\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\\ -\frac{1}{2} & -\frac{3}{2} & \frac{3}{2}\\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

(c) $\mathbf{l} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$ donc : $f(\mathbf{l}) = xf(\mathbf{e}_1) + yf(\mathbf{e}_2) + zf(\mathbf{e}_3)$

Donc:
$$f(\mathbf{l}) = x \begin{pmatrix} 0 \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + y \begin{pmatrix} -1 \\ -\frac{1}{2} \\ -\frac{3}{2} \\ -\frac{1}{2} \end{pmatrix} + z \begin{pmatrix} 1 \\ \frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \end{pmatrix}$$

On obtient:

$$f(\mathbf{l}) = \begin{pmatrix} -y + z \\ \frac{x - y + z}{2} \\ -x - 3y + 3z \\ \frac{-x - y + z}{2} \end{pmatrix}$$

1-3.4 Exercice 4c - Image et noyau d'une application

1. Supposons $a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3 = \mathbf{0}$

Ceci est équivalent à dire que pour tout x réel, $a(1)+b(1+x)+c(1-x^2)=0$, c'est à dire :

$$\begin{cases} a+b+c=0\\ b=0\\ c=0 \end{cases}$$

Ce qui équivaut à : a = b = c = 0

La famille $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ est une famille libre de trois vecteurs, dans un espace vectoriel de dimension 3, c'est donc une base de $\mathbb{R}_2[X]$.

2. $f(P) = (2 - x^2)P' + 2xP$

Appelons respectivement $\varepsilon_1, \varepsilon_2, \varepsilon_3$ les images par f de $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$. On obtient, pour tout x:

$$\varepsilon_1(x) = 2x \; ; \varepsilon_2(x) = x^2 + 2x + 2 \; ; \; \varepsilon_3(x) = -2x$$

On remarque que $\varepsilon_3 = -\varepsilon_1$ donc : $\operatorname{Im} f = \operatorname{Vect} \{\varepsilon_1, \varepsilon_2, \varepsilon_3\} = \operatorname{Vect} \{\varepsilon_1, \varepsilon_2\}$ ainsi $\operatorname{dim} \operatorname{Im} f = 2$

Cherchons Ker f: Soit P défini pour tout x par $P(x) = ax^2 + bx + c$.

 $P \in \operatorname{Ker} f \Leftrightarrow f(P) = 0.$

Ceci est équivalent à dire que pour tout x réel,

$$(2 - x^2) (2ax + b) + 2x (ax^2 + bx + c) = 0$$

Ce qui équivaut à : $\left\{ \begin{array}{c} b=0 \\ 4a+2c=0 \end{array} \right. \text{ d'où } P(x)=a\left(x^2-2\right)$

Soit : $\varepsilon_3'(x) = x^2 - 2$

On a : $Ker f = Vect \{ \varepsilon_3' \}$ et dim Ker f = 1

On vérifie bien : $\dim \operatorname{Ker} f + \dim \operatorname{Im} f = 1 + 2 = 3 = \dim \mathbb{R}_2[X]$.