Partiel Apad algèbre durée 2h. Sans calculatrice, Une seule feuille A4 manuscrite avec vos notes est autorisée. Les trois exercices sont indépendants.

28 novembre 2011

1. Exercice 1. Soit la fonction f définie de $\mathbb{R}_3[X] \to \mathbb{R}_2[X]$ par :

$$f(P) = XP'' + P'$$

On considère les bases canoniques respectives :

Base de
$$\mathbb{R}_2[X]$$
: $B_1 = (e_1' = 1; e_2' = X; e_3' = X^2)$ et Base de $\mathbb{R}_3[X]$: $B = ((e_1 = 1; e_2 = X; e_3 = X^2; e_4 = X^3)$

- (a) Ecrire la matrice de f dans les bases canoniques de $\mathbb{R}_3[X]et\mathbb{R}_2[X]$
- (b) Déterminer une base de Imf. En déduire Kerf.
- (c) Montrer que la famille $B_2 = \{p_1 = X^2; p_2 = X^2 + 1; p_3 = X^2 + X\}$ est une base de $\mathbb{R}_2[X]$
- (d) En utilisant la formule de changement de base que vous rappellerez dans ce contexte, calculer la matrice de f en prenant pour base de $\mathbb{R}_3[X]$ la base canonique et pour base de $\mathbb{R}_2[X]$ la famille B_2 .
- 2. Exercice 2. Soit f un endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{ccc} 6 & 0 & 0\\ 5+a & 0 & -9\\ 1 & 1 & a \end{array}\right)$$

- (a) Montrer que pour tout réel a, f est inversible. Qu'en déduisez vous pour le noyau de f?
- (b) 6 est-il valeur propre de f. Si oui, déterminer une base de l'espace propre associé.
- (c) Calculer le polynôme caractéristique de A.
- (d) Pour qu'elles valeurs de a, ce polynôme est-il scindé?

- (e) Dans chacun des cas suivants, dire si A est diagonalisable. Justifier avec soin. 1er cas : a=6 ; 2ème cas $a^2<36$
- 3. Exercice 3. En justifiant dire si chaque proposition est vraie ou fausse.
 - La matrice A dans est de rang 2.

$$A = \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 5 & 0 & -9 & 9 \\ 1 & 1 & 1 & -1 \\ 1 & 2 & 1 & -1 \end{array}\right)$$

- Si 0 est une valeur propre d'un endomorphisme, alors cet endomorphisme est inversible.
- L'espace vectoriel

$$F = \{ M \in M_3(\mathbb{R}), M = \begin{pmatrix} a & a & 0 \\ a+b & 0 & b \\ 0 & 0 & a \end{pmatrix}; (a,b) \in \mathbb{R}^2 \}$$

est un espace vectoriel de dimension 2.