Partiel de Variable Complexe

(Une feuille A4 recto-verso autorisée)

Samedi 19 Janvier 2008

Exercice 1

Le but de cet exercice est de déterminer

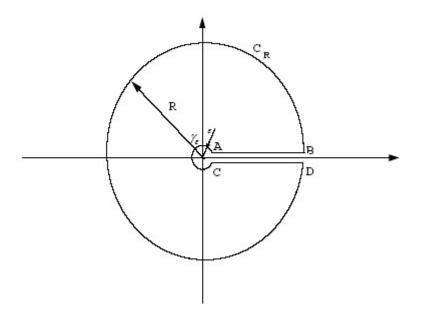
$$I = \int_0^{+\infty} \frac{\sqrt{x}}{x^3 + 1} dx$$

- 1) Définir la détermination de $f(z) = \sqrt{z}$ ayant pour coupure le demi axe des réels positifs et qui prend la valeur de i en z=-1. Déterminer les valeurs de cette détermination sur le bord supérieur et le bord inférieur de cette coupure.
- 2) Déterminer les résidus de la fonction

$$g(z) = \frac{\sqrt{z}}{z^3 + 1}$$

en ses points singuliers isolés. Identifier préalablement les 3 points singuliers isolés.

3) Appliquer le théorème des résidus à la fonction g sur le contour $AB \cup C_R \cup DC \cup \gamma_{\varepsilon}$:



Démontrer avec soin que les intégrales de g sur les contours circulaires C_R et γ_ϵ tendent vers 0, lorsque $R \to +\infty$ et $\epsilon \to 0$ respectivement. En déduire la valeur de l'intégrale I recherchée.

Exercice 2

On considère l'équation différentielle

$$f''(t) + 4f'(t) + 4f(t) = g(t), t > 0$$

avec les conditions initiales suivantes

$$f(0) = -2 \text{ et } f'(0) = 8$$

1) En prenant la transformée de Laplace de l'équation précédente, montrer que $F(p) = TL \lceil f(t) \rceil$ peut s'écrire sous la forme suivante

$$F(p) = A(p) + G(p)B(p)$$

où G(p) = TL[g(t)] et où A(p) et B(p) sont deux fonctions à préciser.

2) Montrer que A(p) s'écrit sous la forme

$$A(p) = \frac{a_1}{p+2} + \frac{a_2}{(p+2)^2}$$

où a_1 et a_2 sont deux réels à préciser. En déduire à l'aide des tables $a(t) = T L^{-1}[A(p)]$ 3) On considère la fonction $g(t) = 6e^{-2t}u(t)$, où u(t) est l'échelon de Heaviside. Déterminer G(p)B(p).

On désire appliquer la formule d'inversion de la transformée de Laplace à la fonction G(p)B(p).

Répondre aux questions suivantes :

- définir le contour de Bromwitch correspondant à ce problème,
- justifier brièvement que l'intégrale sur le contour circulaire tend vers 0 lorsque $R \to \infty$,
- calculer les résidus de la fonction $G(p)B(p)e^{pt}$ en ses points singuliers isolés,
- déterminer la solution de l'équation différentielle f (t).

Exercice 3: TRANSFORMEE EN Z:

On considère l'opération qui au signal x(n) associe le signal $y_1(n)$ défini par

$$y_1(n) = \sum_{i=n-L}^{n-1} x(i) \tag{1}$$

- 1. Cette opération décrit-elle un filtre linéaire? Pourquoi? Si oui, donner sa fonction de transfert $H_1(z)$ ainsi que sa réponse impulsionnelle $h_1(z)$.
- 2. Soit le signal $s_1(n)$ défini par

$$s_1(i) = 0 \text{ si } i \le 0$$

 $s_1(i) = i \text{ si } i \in \{1, ..., L\}$
 $s_1(i) = L \text{ si } i > L$

Montrer que la transformée en Z de s_1 est

$$S_1(z) = \frac{z^{-1}(1 - z^{-L})}{(1 - z^{-1})^2}$$

- 3. Calculer $Y_1(z)$ lorsque x(n) = u(n) (échelon de Heaviside). En déduire la réponse indicielle du système, définie comme la sortie du système lorsque l'entrée est l'échelon de Heaviside.
- 4. On considère l'opération qui au signal x(n) associe le signal $y_2(n)$ défini par

$$y_2(n) = \sum_{i=n+1}^{n+L} x(i)$$
 (2)

Déterminer la réponse indicielle de ce système en utilisant uniquement la rrelation (2). Tracer cette réponse indicielle.

5. Soit finalement le système défini par

$$y(n) = -\sum_{i=n-L}^{n-1} x(i) + \sum_{i=n+1}^{n+L} x(i)$$

Déterminer la réponse indicielle de ce système. Quel est l'effet de ce système sur le signal représenté sur la figure 1. Donner une application pratique de ce résultat.

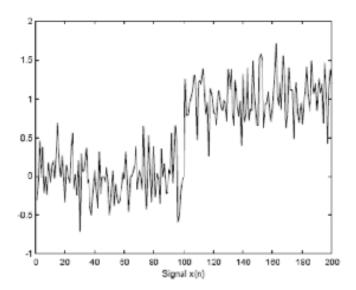


Figure 1 : Signal x(n).

Rappels

Fonction	TL
f(t)	F(p)
$(-1)^n t^n f(t)$	$\frac{d^n}{dp^n}F(p)$
$\int f^{(n)}(t)$	$p^n F(p) - p^{n-1} f(0^+) - \dots - f^{(n-1)}(0^+)$
$\int_0^t f(u)du$	$\frac{F(p)}{p}$
$\frac{f(t)}{t}$	$\int_{p}^{\infty} F(p)dp$
$e^{at}f(t)$	F(p-a)
f(t-a)U(t-a)	$e^{-ap}F(p)$
$f\left(\frac{t}{k}\right)$	kF(kp)
$\int_0^t f(u)g(t-u)du$	F(p)G(p)

Fonction	TL	Convergence
u(t)	$\frac{1}{p}$	$x_c = 0$
$e^{\alpha t}u(t), \ \alpha \in \mathbb{C}$	$\frac{1}{p-\alpha}$	$x_c = \operatorname{Re} \alpha$
$e^{i\omega t}u(t), \omega \in \mathbb{R}$	$\frac{1}{p-i\omega}$	$x_c = 0$
$ch(\alpha t)u(t), \alpha \in \mathbb{C}$	$\frac{p}{p^2-\alpha^2}$	$x_c = \sup (\operatorname{Re}(\alpha), \operatorname{Re}(-\alpha))$
$sh(\alpha t)u(t), \alpha \in \mathbb{C}$	$\frac{\alpha}{p^2 - \alpha^2}$	$x_c = \sup (\operatorname{Re}(\alpha), \operatorname{Re}(-\alpha))$
$\cos(\omega t) u(t), \omega \in \mathbb{R}$	$\frac{p}{p^2+\omega^2}$	$x_c = 0$
$\sin(\omega t) u(t), \omega \in \mathbb{R}$	$\frac{\omega}{p^2 + \omega^2}$	$x_c = 0$
$t^n u(t), n \in \mathbb{N}$	$\frac{n!}{p^{n+1}}$	$x_c = 0$
$t^n e^{\alpha t} u(t), n \in \mathbb{N}, \alpha \in \mathbb{C}$	$\frac{n!}{(p-\alpha)^{n+1}}$	$x_c = \operatorname{Re} \alpha$
$t^{\alpha}u(t), \ \alpha \in]-1, +\infty[$	$\frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$	$x_c = 0$

Fonction	TZ
f(n)	F(z)
$f(n-n_0)$	$z^{-n_0}F(z)$
$a^n f(n)$	$F\left(\frac{z}{a}\right)$
nf(n)	$-z\frac{dF(z)}{dz}$
$f(n) * g(n) = \sum_{k=-\infty}^{+\infty} f(k)g(n-k)$	F(z)G(z)