
Chapter 6

Automatic Differentiation

At the present stage, the reader known why it can be interesting to consider an adjoint model,
what for. In practice, the strategy to write the adjoint model may be different according to the
forward computational code already available. One of the three possibilities to derive an adjoint
code, consists to derive directly the forward source code. This option is called source-to-source
transformation; it is possible in C or Fortran (at leat). In the present chapter, the forward
source code is supposed to be written in Fortran. In the next section, the advantages and
drawbacks of ”automatic differentiation” is presented briefly. Next, we present the relationship
between the differential calculus (as considered in the previous chapters) and a source code
differentiation. The presentation is done in the framework of the software Tapenade, [13].
Also, we present how to validate an adjoint code. Next, the conceptual way to re-use the direct
linear solver (eg arising from our favorite linear algebra library) in the adjoint code, since it
solves a linear system thus the algorithm should not be differentiated. Finally, are presented
some useful tricks related to the standard MPI instructions (how to adjointize the forward MPI
instructions ?), and how to save a bit of memory (memory may be the greatest problem while
running an adjoint code).

6.1 What adjoint code ?

In practice, there exists three approaches to compute the adjoint state variable, then the gra-
dient of the cost function.

1. We write the continuous adjoint equations, we discretize them using an appropriate nu-
merical scheme (a-priori the same numerical method than the direct model), we discretize
the expression of the (continuous) gradient. We obtain the so-called discretized continuous
gradient

2. We discretize the direct model. We derive these discrete equations in order to obtain the
adjoint discrete equations. It is calculations in finite dimension spaces, that is why the
present approach is the most famous one in engineering. We obtain the so-called discrete
gradient.

3. The computational gradient is obtained from the differentiation of the forward code di-
rectly !

145

146 Course ”Variational Data Assimilation”

The three approaches are possible. The choice should be done upon the human time devel-
opment required. The three gradients obtained are not exactly the same since propagation of
all different errors is not the same for each approach. Very few numerical analysis results exits
on the topic (e.g. in case of a linear PDE discretized using conforming finite element, the first
two approaches are the same up to the scheme errors).
For non-linear and very large scale problems, some end-users claim that the tiny differences
between the three gradients can justify differences of local convergence behaviors observed...

The algorithmic differentiation approach (last approach) may present two advantages. First,
it may ensure a better consistency between the computed cost function, which is the output of
the direct code, and its gradient since it is the computed cost function which is differentiated
(consistency including all types of errors: schemes, rounding errors, iterative algorithms etc).
Second, a large part of this extensive task can be automated using algorithmic differentiation,
see e.g. [11], if the direct code has been designed to it !... In case of a direct code written
in Fortran, and initially if designed to be differentiated by an algorithmic process, the adjoint
code can be almost automatically derived using an automatic differentiation software. One of
the most efficient automatic differentiation tool, source-to-source, is Tapenade, see [13, 12].

The computational software DassFlow presented previously has been initially design to be
differentiated by Tapenade; that is why one can obtain very fast the adjoint code up-to-date.
As a matter of fact, let us point out that as soon as the direct model is modified (extra terms,
numerical approximation changed etc), the corresponding adjoint code must be modified in
consequence, whatever the approach chosen.

6.2 From mathematical differentiation to source code

differentiation

We describe how to define the direct code, then what is the response of the adjoint code
automatically generated and finally how to use it. We follow the presentation done in [14], see
[15] too.
Let K be the space of control variables and Y the space of the forward code response. In the
case of DassFlow, we have :

k = (y0, qin, zout, n, zb,)
T and Y =

�
y, j

�T

Let us point out that we include both the state and the cost function in the response of the
forward code.

We can represent the direct code as the operator M : K −→ Y , see figure 6.1.
The tangent model becomes ∂M

∂k (k) : K −→ Y . It takes as input variable a perturbation of
the control vector dk ∈ K, then it gives the variation dY ∈ Y as output variable, see figure 6.2:

dY =
∂M
∂k

(k) · dk

J. Monnier 147

Yk
M

Figure 6.1: Representation of the direct model.

dYdk ∂M
∂k

(k)

Figure 6.2: Representation of the tangent model.

The adjoint model is defined as the adjoint operator of the tangent model. This can be
represented as follows:

�
∂M
∂k (k)

�∗
: Y � −→ K�. It takes dY ∗ ∈ Y � an input variable and provides

the adjoint variable dk∗ ∈ K� at output, see figure 6.3:

dk
∗ =

�
∂M
∂k

(k)

�∗

· dY ∗

dY ∗ dk∗�
∂M
∂k

(k)
�∗

Figure 6.3: Representation of the adjoint model.

Now, let us make the link between the adjoint code and the ”computational gradient”.

By definition of the adjoint, we have :

� �
∂M
∂k

�∗· dY ∗, dk
�

K�×K
=

�
dY ∗,

�
∂M
∂k

�
· dk

�

Y �×Y
(6.1)

or, using the relations presented above:

�
dk∗, dk

�
K�×K =

�
dY ∗, dY

�
Y �×Y . (6.2)

If we set dY ∗ = (0, 1)T and by denoting the perturbation vector dk = (δy0, δn, δzb, δqin)T ,

148 Course ”Variational Data Assimilation”

we obtain:

��
0
1

�
,

�
dy∗

dJ∗

��

Y �×Y
=

�




δy∗0
δn∗

δz∗b
δqin∗

δz∗out




,





δy0
δn
δzb
δqin

δzout





�

K�×K

Moreover, we have by definition:

dj = ∂J
∂y0

(k) · δy0 + ∂J
∂n(k) · δn+ ∂J

∂zb
(k) · δzb + ∂J

∂qin
(k) · δqin + ∂J

∂zout
(k) · δzout

Therefore, the adjoint variable dk∗ (output of the adjoint code with dY ∗ = (0, 1)T) corresponds
to the partial derivatives of the cost function j:

∂J
∂y0

(k) = y∗0
∂J
∂n(k) = n∗

∂J
∂zb

(k) = z∗b
∂J
∂qin

(k) = q∗in
∂J

∂zout
(k) = z∗out

In summary, in order to compute the ”computational gradient” (partial derivatives of the
cost function j using differentiation of the forward code), first, one runs the direct code then
one runs the adjoint code with dY ∗ = (0, 1)T as input.

6.3 Automatic differentiation in short

Automatic differentiation softwares Automatic Differentiation (AD) (also called algo-
rithmic differentiation) aims at computing the derivative of an program output. one the
possible approach is the source-to-source one; it means the AD software (kind of a ”super-
over-compiler”...) transforms the direct source code into a tangent linear source code and/or
an adjoint source code.
Researches in this field are very active; nowadays few reliable AD tools are available, both for
Fortran and C languages. Let us cite only OpenAD and Tapenade. There use is still quite
technical and tricky. It requires a good knowledge of what is the derivative of the output of
the model, next how it is translated in terms of a program instructions.
In Fortran and C languages, the only remaining limitation is the pointer management; never-
theless some easy rules allow to circumvent this limitation.

We present below the basic principles of a AD tool, and we will focus on the Tapenade.
Tapenade [13, 12] is an automatic differentiation tool for Fortran and C programs. It is de-
veloped by the Tropics team at INRIA Sophia-Antipolis. Tapenade works using source code
transformation : it builds the tangent and/or adjoint code automatically from the direct source
code. We refer to its rich webpage and the FAQ section.

Concerning AD in general, we refer also to [11, 23].

J. Monnier 149

Some basic rules to respect for the direct code. In order to be able to differentiate
a Fortran source code using Tapenade, one must respect some basic rules of code structure.
Typically, the code structure must be as follows:

. Preprocessing.
Reading mesh, parameters, data etc AND allocate all arrays.

. Computational kernel.
At the second level of the program tree, one gives the head routine to be differentiated
to Tapenade. From this head routine, neither allocate nor pointer may appear.

. Post-processing.
Writing in files, visualization etc.

?

Towards Data Assimilation

Simulated state
of the system

(h , q)

Parameters
• Manning, DEM (time independ.)
• B.C. (time dependent) + I.C.

Model math & num
Computational Code
(DassFlow - Telemac2D)

Variationnal D.A.:
Minimization discrepancy

(cost function)

? Observations:
measures in situ,
remotely-sensed

Cost function:
It measures the discrepancy between the simulated state

and the observations

It is a function of the control variable k (Manning, topo., B.C., I.C.):

Optimization problem:

where is the solution of the model
 (state of the system)

and

The state equation (forward model)

State equation (nonlinear):

Since the cost computation is time-consuming:
 local minimization algorithm (quasi-Newton e.g. BFGS)
Since many variables of control:
 introduction of the adjoint model to compute the gradient
 Ref. JL Lions ‘68

This gives

Adjoint State equation

Note. a. Reverse time b.Contains the observations

Gradient obtained:

The Optimality System is

Ref. e.g.
[Le Dimet – Talagrand ’86]
[Talagrand-Courtier’87]

Variationnal Data Assimilation (4D-var): optimal control process

State & adjoint state
of the system

Parameters
• Manning, DTM
• B.C., I.C.

Direct Model
0 !T

Minimizer L-BFGS
(descent algorithm) Adjoint model

(observations included)
T !0

Cost function & its gradient

New iterate

Step 1. Data Assimilation
 process (Calibration)

Step 2. Prediction

Data Assimilation Principle

Remarks
!  The gradient gives local information.
 One run of the forward+adjoint models (without optimization) gives a local

sensitivity information
!  One can control the boundary conditions similarly

What Adjoint Code?
Differentiate / Discretize / Implement : in what order !?

•  Continuous gradient:
 1. Differenciate mathematically; 2. discretize; 3. implement

•  Discrete gradient:
 1. discretize; 2. differenciate; 3. implement

•  Code differenciation:
 1. Implement; 2. Differentiate the code (Automatic Differentiation tool

e.g. Tapenade)

Make figure

From Equations to Automatic Differentiation
 Tapenade: source-to-source transformation

Forward model
 (contains the cost function)

Linearized tangent model

Adjoint model

Ref.
M. Honnorat
PhD ’ 07

From Equations to Automatic Differentiation (continued)

Definition of the adjoint model:

Thus,

If we set we get

This means:

Therefore the response of the adjoint code is the gradient

Principles of «!Automatic Differentiation!»
 Tapenade: source-to-source transformation

Ref. Hascoet et al.
Tapenade tool
INRIA Tropics

The «!A.D.!» (Algorithm Differentiation in fact) consists
to compute derivatives of a given function M.
The derivatives are exact modulo rounding errors.

Given the control variable , we have the forward code :

Then in a direction

 where m’_p is the jacobian of the elementary operation m_p.

The tangent code value is computed from right to left (matrix-vector products).

This can be inserted into
the original source code.

This is the «!forward mode!»
or «!tangent mode!» of the A.D. tool

Principles of A.D. (continued)

Given the adjoint input variable , we have the adjoint code :

This can be computed from right to left (matrix-vector products).
Nevertheless,
•  the code is reverse way
•  all the variables have to be either stored or all recomputed
 " A balance between storing & recomputing is done (« checkpointing »)

This cannot be inserted
into the original source code !

Source-to-source transformation: an extra source code is (automatically) generated

Tapenade On-line Differentiation engine.
Current version: all Fortran 95 excepted pointers & dynamic allocates

This is the «!adjoint mode!»
or «!reverse mode!»of the A.D. tool

An example. The «!tangent!» mode Ref. Hascoet et al.
Tapenade tool
INRIA Tropics

 

 
 

An example. The «!adjoint!» mode

If and For statements

 

 

 

=> Snapshot and checkpointing strategy

Snapshot and checkpointing in Tapenade

Checkpointing and snapshot in Tapenade

 
 

 

158 Course ”Variational Data Assimilation”

6.4 Exercices

Let us consider a computational Fortran code solving a very simple dynamic system: the scalar
linear ODE order one: y�(t) = f(y(t)u(t)) with f(y(t), u(t) = ay(t)+u(t), with initial condition.
y(t) is the state of the system, while u(t) is the control.

The goal here is to differentiate first by hand the source code (algorithmic differentiation),
next using Tapenade software (automatic differentiation).

The direct source code is the following.

! Basic program designed to be differentiated using Tapenade

! The head of the tree to be differentiated by Tapenade is

! the first routine of computational part

program dynamic_system

implicit none

integer i

real*8 :: dt, T0, TN, y0

! all allocate must be in the main program

! (out of the computational part which will be diffrentiated)

real*8, dimension(:), allocatable :: u, y

integer :: nstep

T0 = 0.d0

TN = 1.d0

!time step (should be defined by the stability condition)

dt = 0.001d0

nstep = int((TN-T0)/dt)

!allocate instructions must be out of the part differentiated by Tapenade

allocate(y(nstep))

allocate(u(nstep))

!initial state and initial control

!here they are constant (u could be a time dependent vector)

y0 = 3.4d0

u = 2.6d0

!head routine of the computational part

!=>the top tree routine of the code thar will be differentiated by Tapenade

call solve_model(y0, u, y, dt, nstep)

end program dynamic_system

!The direct model is:

!y’(t) = f(y(t)u(t)) + I.C.

!Scheme: Euler explicit

subroutine solve_model(y0, u, y, dt, nstep)

implicit none

J. Monnier 159

integer, intent(in) :: nstep

real*8, intent(in) :: dt, y0

real*8, dimension(nstep), intent(in) :: u

real*8, dimension(nstep), intent(out) :: y

real*8 :: f

integer :: i

! initialize the state variable

y(1) = y0

! time loop

do i = 1, nstep - 1

y(i+1) = y(i) + dt * f(y(i),u(i))

end do

return

end subroutine solve_model

! Right-hand side f

! f(y(t),u(t)) = a y(t) + u(t)

real*8 function f(y,v)

implicit none

real*8, intent(in) :: y, v

real*8, parameter :: a = 1

f = a * y + v

end function f

Exercice 6.4.1. Algorithmic differentiation by hand.
1) Write the tangent linear codes of the subroutine solve model and function f.
2) Write the corresponding adjoint codes.

Exercice 6.4.2. Algorithmic differentiation using Tapenade.
1) Add in the direct code the computation of a cost function j.
2) Use Tapenade software (web interface on-line) in order to obtain:

a) the tangent linear codes of the subroutine solve model and function f.

b) the corresponding adjoint codes.

3) Read carefully and analyze the two routines automatically generated.

6.5 Validation of an adjoint code

We describe below how we check the validity of the adjoint code. Classicaly, we check that it
is actually the adjoint of the tangent linear code (scalar product test) and that it computes
correctly the partial derivative of the cost function (gradient test).

160 Course ”Variational Data Assimilation”

6.5.1 Scalar product test

The objective of this test is to check if the adjoint code is actually the adjoint of the tangent
linear code. In other words, we check the relation (6.1) :

• Given an arbitrary dk ∈ K, we compute using the tangent linear code :
dY =

�
∂M
∂k

�
· dk

• Given an arbitrary dY ∗ ∈ Y , we compute using the adjoint code :
dk∗ =

�
∂M
∂k

�∗· dY ∗

• Then, we compute the following scalar products :

. sp1 =
�
dY ∗, dY

�
Y

. sp2 =
�
dk∗, dk

�
K

• And we check if sp1 = sp2 or not.

Figure 6.4 (b) shows an example of the scalar product test.

Figure 6.4: Adjoint code validation: scalar product test

6.5.2 Gradient test

The objective of this test is to check if the adjoint variables dX∗ computed by the adjoint code
correspond to the partial derivatives of the cost function.
The Taylor expansion of the cost function j at k for a small perturbation α δk (where α ∈ R+)
writes :

j(k+ α δk) = j(k) + α ∂j
∂k(k) · δk+ o

�
α�δk�

�
. (6.3)

Then, we obtain either the uncentered finite difference approximation (order 1) or the centered
finite difference approximation order 2:

j(k+ α δk)− j(k− α δk)

2α
=

∂j

∂k
(k).δk+O

�
α2�δk�2

�
. (6.4)

We set either

Iα =
j(k+ α δk)− j(k− α δk)

2α ∂j
∂k(k) · δk

. (6.5)

J. Monnier 161

or:

Iα =
j(k+ α δk)− j(k)

α ∂j
∂k(k) · δk

. (6.6)

According to (6.3), one must have: lim
α→0

Iα = 1.

The gradient test consists to check this property:

• For an arbitrary k, we compute ∂j
∂k(k) with the adjoint code.

• With the direct code, we compute j(k).

• For n = 0, . . . , N :

• We compute α = 2−n ;

• With the direct code, we compute j(k+ α δk) ;

• We compute Iα ;

• We check if lim
α→0

Iα = 1 or not.

Figure 6.5 shows two results of the gradient test: at order 2 and at order 1 (observe the
difference of accuracy reached).
|Iα − 1| is plotted against α in logarithmic scale. The convergence is good until α > 10−7.
Then, when α is smaller, the approximation of the partial derivatives is not reliable anymore
due to truncation errors (to show it, add a fix term in the Taylor expansion, then it is divided
by the perturbation hence increasing).

(a) (b)

Figure 6.5: Adjoint code validation. Gradient test at order 1 (a), at order 2 (b).

6.6 Recycle your linear solver

Let us recall that, roughly, the adjoint of a linear system is the same linear system but trans-
posed. (Notice that the latter feature brings some quite heavy difficulties...). Thus, one should
not derive the linear solver instructions one-by-one using an automatic differentiation tool
(source-to-source) but instead recycle it ! Here, we describe how to generate the adjoint of a

162 Course ”Variational Data Assimilation”

routine containing a call to a linear solver.

Next, we present a small Fortran program including the call to a linear solver; we apply the
method on the codes automatically generated by Tapenade.

6.6.1 How to adjoint-ize your linear solver ?

The direct routine

Let us consider two input parameters c and d (hence active variables in Tapenade terminology).
Then, we have A matrix and b vector defined as follows:

�
A

b

�
= f(c, d) =

�
f1(c, d)
f2(c, d)

�

Let x be the vector solution of the linear system: Ax = b. Next, we compute the cost
function j.

We present in Fig. 6.6 the direct routines dependencies.

Figure 6.6: Direct routines representation

The linear tangent routine generated

The linear tangent code derived by Tapenade is defined as follows:

• ċ and ḋ are the corresponding tangent variables of the parameters, they are input param-
eters.

• Ȧ and ḃ satisfy: �
Ȧ

ḃ

�
= df(c, d) ·

�
ċ

ḋ

�

Next, we have to treat the linear solver. If we differentiate the linear system:

Ax = b (6.7)

we find: Aẋ+ Ȧx = ḃ or, after rewrite:

Aẋ = ḃ− Ȧx (6.8)

J. Monnier 163

At this stage, we already know A and x by running direct routine. The variables Ȧ, ḃ are output
variables of the Tapenade tangent linear routines. Next, we call the linear solver in order to
obtain: ẋ. The latter represents the derivative value of x at point (c, d) in the direction (ċ, ḋ)
given.
Thus, we are able to compute ẋ without deriving the linear solver instructions. We can call
directly the same linear solver (we recycle it).
Next, we obtain j̇ the gradient value at point (c, d) in the direction (ċ, ḋ) given (it is a scalar
value like j).
We present in Fig. 6.7 the scheme representing the linear tangent routines.

c

d b

A

with Aẋ = ḃ− Ȧx

ḋ

ċ

x ẋ

Ȧ

ḃ

j̇

Figure 6.7: Linear tangent routines representation

The adjoint routines generated

Let us recall that the adjoint code is deduced from the tangent linear code, in the reverse order.
The output variable of the adjoint routine are c̄ and d̄. In a Tapenade point of view, they are
the adjoint variables of (c, d) (same type); while in a mathematical point of view, they are the
gradient with respect to c and d.
The input variable of the adjoint cost computation routine is j̄. Let us recall that j̄ must be
set to 1, see Section 6.2.
The input variable of the adjoint linear system routine is x̄.

The adjoint code can be splitted in three steps, see Fig. 6.7:

1) From j̄ to x̄ (let us assume it is a separated routine: cost computation, adjoint)

2) From x̄, find Ā and b̄

3) From Ā and b̄, find c̄ and d̄.

The first and third steps can be obtained directly by running the Tapenade adjoint code.
The adjoint of the third step writes:

�
c̄

d̄

�
= df

∗(c, d) ·
�

Ā

b̄

�
(6.9)

164 Course ”Variational Data Assimilation”

The adjoint of the linear system

The second step involves a call to the linear solver. Thus, let us detail how to compute Ā and
b̄ with the use of a linear solver as a black box. In other words, we detail below the adjoint of
Step 2) only.
Input variable is x̄, while output variables are Ā, b̄.
In the linear tangent code, we have : Aẋ = ḃ− Ȧx or equivalently:

2a) ḃ� = ḃ− Ȧx

2b) Aẋ = ḃ�

The adjoint is reverse. Thus let us consider first the instruction 2b) Aẋ = ḃ� only. It can be
written as follows (see e.g. [12]):

�
ẋ

ḃ�

�
=

�
0 A−1

0 1

�
×

�
ẋ

ḃ�

�
(6.10)

Two fundamental remarks.

a) Let us point out that by convention, at left-hand sides are the variables at output, while at
right-hand sides are the variables at input (of the routine).
b) Let us point out that input variables in the linear tangent routine become output variables
in the adjoint routine. Furthermore, by convention, output variables are initialized at 0.

Let us write the adjoint of the instruction 2b). Since ḃ� is the input variable of the instruction,
its adjoint b̄� will be the output one (and set at 0 when entering into the routine). Similarly,
since ẋ is the output variable, its adjoint x̄ will be the input one. The adjoint instruction of
(6.10) writes: �

x̄

b̄�

�
=

�
0 0

A−T 1

�
×

�
x̄

b̄�

�

Hence: �
x̄ = 0
b̄� = A−T x̄+ b̄�

Thus the system rewrites: �
AT b̄� = x̄

x̄ = 0

And one has to solve the linear system: AT b̄� = x̄. It can be done using the linear solver called
as a black box (we recycle it !). It gives b̄�.

Now, let us consider the adjoint of the instruction 2a):

2a) ḃ� = ḃ− Ȧx (6.11)

This linear instruction writes as follows:

(ḃ�, ḃ, Ȧ) = (ḃ�, ḃ, Ȧ)×




0 0 0
1 1 0
−x 0 1





J. Monnier 165

The corresponding adjoint instruction writes:

(b̄�, b̄, Ā) = (b̄�, b̄, Ā)×




0 1 −xT

0 1 0
0 0 1





Therefore, the adjoint instruction of (6.11) writes:






b̄� = 0
b̄ = b̄� + b̄

Ā = −b̄�xT + Ā

The variables Ā, b̄ are output variables, hence set at 0 when entering into the adjoint routine.

Therefore, in summary the adjoint of the tangent linear instructions Aẋ = ḃ− Ȧx (ie Step
2)) can be re-write: 





AT b̄ = x̄

Ā = −b̄xT

x̄ = 0

The first instruction can be solved using the same linear solver than the direct routine (”recycle
your linear solver”). The second instruction writes too: Āij = −b̄ixj.

Remark 6.6.1.

- Let us notice that the matrix Ā is the same type of A with the same sparse profile (even
if −b̄xT is a-priori a full matrix). As a matter of fact, one needs only the adjoint values of
coefficients Ai,j (and one do not need the others coefficients).

- Let us recall that (c̄, d̄) are the components of the gradient with respect to (c, d) respectively;
they are obtained by (6.9).

- Since the direct model is Ax = b, the state of the system is x, the adjoint state is b̄

(the solution of the transposed linear system) and x̄ is the right-hand side which contains the
observations and misfit terms (it equals to (x−xobs) if the observation operator equals identity).

We summarize all steps in Fig. 6.8.

xĀd̄

c̄ x̄

A

b̄ j̄

Figure 6.8: Adjoint routine representation

166 Course ”Variational Data Assimilation”

6.6.2 A simple example

We illustrate the previous procedure of the linear solver recycling on a very simple example.
In all the following, one can replace the routine sys solver by any linear system solver routine.
This example has been written by R. Madec, research engineer, IMT Toulouse.

Direct code

We present the Fortran source code of the direct subroutine written in file simple operation.f90:

subroutine simple_operation(c,d,x)

implicit none

integer, parameter :: n=2

double precision, intent(in) :: c

double precision, intent(in) :: d

double precision, dimension (n), intent(out):: x

double precision, dimension (n,n) :: A

double precision, dimension (n) :: b

!definition of matrix A

A(1,1) = 3*c +4*d

A(1,2) = c +18*d

A(2,1) = 2.5*d

A(2,2) = 3.4*c

!definition of vector b

b(1) = 8*c*d

b(2) = 2*d

!solver Ax=b

call sys_solver(A,b,x,n)

end subroutine simple_operation

Linear tangent code

We generate the linear tangent code using Tapenade. To do so, we type in a terminal (or in a
Makefile):

tapenade -forward -head simple_operation \

-vars "c d" -outvars "x" \

-html -O $(PWD)/forward simple_operation.f90

Then, the file simple operation d.f90 is created in the forward directory. This file is the
following:

! Generated by TAPENADE (INRIA, Tropics team)

J. Monnier 167

! Tapenade 3.4 (r3375) - 10 Feb 2010 15:08

!

! Differentiation of simple_operation in forward (tangent) mode:

! variations of useful results: x

! with respect to varying inputs: c d

! RW status of diff variables: x:out c:in d:in

SUBROUTINE SIMPLE_OPERATION_D(c, cd, d, dd, x, xd)

IMPLICIT NONE

INTEGER, PARAMETER :: n=2

DOUBLE PRECISION, INTENT(IN) :: c

DOUBLE PRECISION, INTENT(IN) :: cd

DOUBLE PRECISION, INTENT(IN) :: d

DOUBLE PRECISION, INTENT(IN) :: dd

DOUBLE PRECISION, DIMENSION(n), INTENT(OUT) :: x

DOUBLE PRECISION, DIMENSION(n), INTENT(OUT) :: xd

DOUBLE PRECISION, DIMENSION(n) :: b

DOUBLE PRECISION, DIMENSION(n) :: bd

DOUBLE PRECISION, DIMENSION(n, n) :: a

DOUBLE PRECISION, DIMENSION(n, n) :: ad

INTEGER :: i,j

ad(1, 1) = 3*cd + 4*dd

a(1, 1) = 3*c + 4*d

ad(1, 2) = cd + 18*dd

a(1, 2) = c + 18*d

ad(2, 1) = 2.5*dd

a(2, 1) = 2.5*d

ad(2, 2) = 3.4*cd

a(2, 2) = 3.4*c

bd(1) = 8*(cd*d+c*dd)

b(1) = 8*c*d

bd(2) = 2*dd

b(2) = 2*d

CALL SYS_SOLVER_D(a, ad, b, bd, x, xd, n)

END SUBROUTINE SIMPLE_OPERATION_D

Using the method presented in subsection 6.6.1, we replace the unknown linear tangent of
the linear system solver:

CALL SYS_SOLVER_D(a, ad, b, bd, x, xd, n)

by

CALL SYS_SOLVER(a, b, x, n)

168 Course ”Variational Data Assimilation”

!matrix vector product : bd = bd - Ad x

do j=1,n

do i=1,n

bd(i)=bd(i) - ad(i,j)*x(j)

end do

end do

CALL SYS_SOLVER(a, bd, xd, n)

Adjoint code

We generate the adjoint code using Tapenade. To do so, we type in a terminal (or in a Makefile):

tapenade -backward -head simple_operation \

-vars "c d" -outvars "x" \

-html -O $(PWD)/backward simple_operation.f90

Then, the file simple operation b.f90 is created in the backward directory. This file is the
following:

! Generated by TAPENADE (INRIA, Tropics team)

! Tapenade 3.4 (r3375) - 10 Feb 2010 15:08

!

! Differentiation of simple_operation in reverse (adjoint) mode:

! gradient of useful results: x

! with respect to varying inputs: x c d

! RW status of diff variables: x:in-zero c:out d:out

SUBROUTINE SIMPLE_OPERATION_B(c, cb, d, db, x, xb)

IMPLICIT NONE

INTEGER, PARAMETER :: n=2

DOUBLE PRECISION, INTENT(IN) :: c

DOUBLE PRECISION :: cb

DOUBLE PRECISION, INTENT(IN) :: d

DOUBLE PRECISION :: db

DOUBLE PRECISION, DIMENSION(n) :: x

DOUBLE PRECISION, DIMENSION(n) :: xb

DOUBLE PRECISION, DIMENSION(n, n) :: a, at

DOUBLE PRECISION, DIMENSION(n, n) :: ab

DOUBLE PRECISION, DIMENSION(n) :: b

DOUBLE PRECISION, DIMENSION(n) :: bb

INTEGER :: i,j

a(1, 1) = 3*c+ 4*d

a(1, 2) = c + 18*d

a(2, 1) = 2.5*d

a(2, 2) = 3.4*c

b(1) = 8*c*d

J. Monnier 169

b(2) = 2*d

CALL SYS_SOLVER_B(a, ab, b, bb, x, xb, n)

db = 2*bb(2)

bb(2) = 0.D0

cb = 3.4*ab(2, 2) + 8*d*bb(1)

ab(2, 2) = 0.D0

db = db + 2.5*ab(2, 1) + 8*c*bb(1)

ab(2, 1) = 0.D0

cb = cb + ab(1, 2)

db = db + 18*ab(1, 2)

ab(1, 2) = 0.D0

cb = cb + 3*ab(1, 1)

db = db + 4*ab(1, 1)

xb = 0.D0

END SUBROUTINE SIMPLE_OPERATION_B

Using the method presented in subsection 6.6.1 we replace the unknown adjoint of the linear
system solver:

CALL SYS_SOLVER_B(a, ab, b, bb, x, xb, n)

by the following instructions:

!at = transpose(a)

at(1, 1) = 3*c + 4*d

at(2, 1) = c + 18*d

at(1, 2) = 2.5*d

at(2, 2) = 3.4*c

!new solver

call sys_solver(a,b,x,n)

call sys_solver(at,xb,bb,n)

ab=0.d0

do j=1,n

do i=1,n

if (ab(i,j).ne.0.) ab(i,j)=-bb(i)*x(j)

end do

end do

!At = transpose(A)

do j=1,n

do i=1,n

At(i, j) = A(j,i)

end do

end do

170 Course ”Variational Data Assimilation”

!new solver

call linear_solver(A,b,x,n)

call linear_solver(At,xb,bb,n)

do j=1,n

do i=1,n

if (Ab(i,j).ne.0.) Ab(i,j)= - bb(i)*x(j)

end do

end do

We have recycled the linear solver (which can be called as a black box).

6.7 Complement: MPI instructions

We present the procedure to obtain the adjoint code of a Fortran code calling MPI basic rou-
tines and using the automatic differentiation tool Tapenade.
This part is skipped since no time enough.

6.8 Complement: optimize your memory. Checkpoint-

ing.

When you use Tapenade to create an adjoint code, you have no mean to know the memory
consumption that will take Tapenade. The latter is a direct consequence of the ’‘PUSH” and
“POP” instructions introduced by Tapenade in your code. The “PUSH” instruction is keeping
in memory the variable until a “POP” of this variable is done. Every adjoint code is divided
into two part: the first part, which is just a copy of your direct code with add of “PUSH”
instructions filling the memory; the second part written by Tapenade and running a backward
code with the adjoint variables, and freeing the memory with POP instructions.
Memory problems can appear if you have “PUSH”es of, for example, your state variable at
every time steps on a simulation.

We present below a way to avoid memory faults by using the checkpointing strategy of
Tapenade in a ”smart” way.

Checkpointing strategy First thing is to anticipate and identify which part of the “PUSH”
and “POP” instructions in your code is potentially greedy in memory. To narrowing it, it
should appear in the biggest loop (i.e. with the most iterations) of the algorithm and occur
where your state variables are.

An example of order of magnitude. In DassFlow software, based on the 2D shallow-water
equations, the main “PUSH” and “POP” contributions are related to the state variable in the
time step loop.
For a 25 000 cells mesh with 100 000 time steps, if we do nothing, as our state variable counts 3

J. Monnier 171

fields, this would cost just for “pushing” this variable: 3× 25000× 100000× 8 = 6× 1010o= 60
Go of RAM which is a lot !

(NB. The number 8 represents the octet size of a double precision number; it is 4 for a
simple precision).
Most of the time, it is only one variable that make your system fall.

