CONTENT

- I. Geophysical context
- II. Inverse modelling
- III. A new finite element solver

IV. Virtual inverse rheometry

- Reliability of surface velocity observations
- Power-law index identification
- Fluid consistency: sensitivity
- Fluid consistency: identification
- V. The basal slipperiness
- VI. Conclusions & Perspectives

VIRTUAL INVERSE RHEOMETRY

- Power-law description : $\eta(\mathbf{u}) = \eta_0(T) \|\underline{D}(\mathbf{u})\|_F^{s-2}$
 - uncertain parameters:

Exponent sConsistency η_0

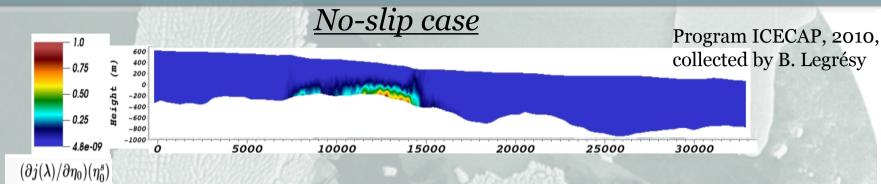
Temperature T(z): linear decrease from bottom to surface

- « Ill-posed »: $\eta(\mathbf{u}) \longrightarrow +\infty$ when $\|\underline{\boldsymbol{D}}(\mathbf{u})\| \to 0$ since s-2 < 0
 - singularity at free surface (vanishing shear)

Goal:

- Determine the importance of rheological parameters
- Provide calibration/identification

Fluid consistency $\eta_0(T)$: sensitivity



- High sensitivity = highly sheared area
 - localized at the accelerating zone (bump)
 - concentrated at bottom (no-slip)

Behaviour at high shear-rate dominant

• Sensitivity independant of the vertical temperature gradient

Sliding case

• Relaxation of the high shearing at bottom distribution of the shear-rate

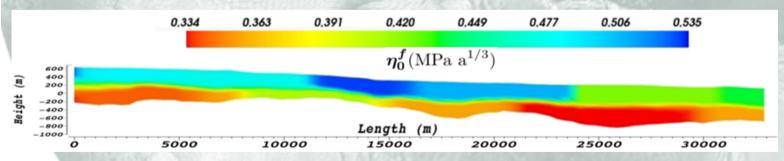
Vertical temperature gradient (shearing) Sensitivity localized at the bottom

Fluid consistency $\eta_0(T)$: identification

- $\eta_0(T)$: spatially distributed value (to be inferred)
 - requires regularization (Tykhonov)
- Absolute sensitivity: low compared to the exponent one
- Cost function :

$$j(\eta_0) = \int_{\Gamma_s} \|u_s^{obs} - u_s(\eta_0)\|_2^2 d\mathbf{x} + \gamma_1 \int_{\Gamma_s} \|\partial_x \eta_0\|_2^2 ds + \gamma_2 \int_{\Gamma_s} \|\partial_z \eta_0\|_2^2 ds$$

• Regularization: $good\ a\ priori\ required$ on the temperature gradient Given exact ratio: $\gamma_1 = \gamma_2/7$, Initial-guess: surface value



Synthetic surface data: 0.1% noise Final error ~ 9%

Otherwise ill-posed inverse problem, converge to wrong optimal value

Results presented in Martin-Monnier, J. Geophysical Research, submitted

CONTENT

- I. Geophysical context
- II. Inverse modelling
- III. A new finite element solver
- IV. Virtual inverse rheometry

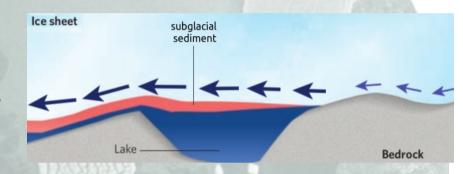
V. The basal slipperiness

- Sensitivity to a free-slip area
- Sensitivity and slip ratio
- Formulation of an incomplete adjoint
- Friction coefficient invertibility
- VI. Conclusions & Perspectives

THE BASAL SLIPPERINESS

- Major component of ice dynamics
 - models heterogeneous interfacial layer

Regelation, enhanced creep, subglacial hydrology, basal sediment deformation



multiscale (spatial & temporal)

$$|\tau_b|^{m-1}\tau_b = \beta u_b^{\tau}$$

1 parameter involving various processes

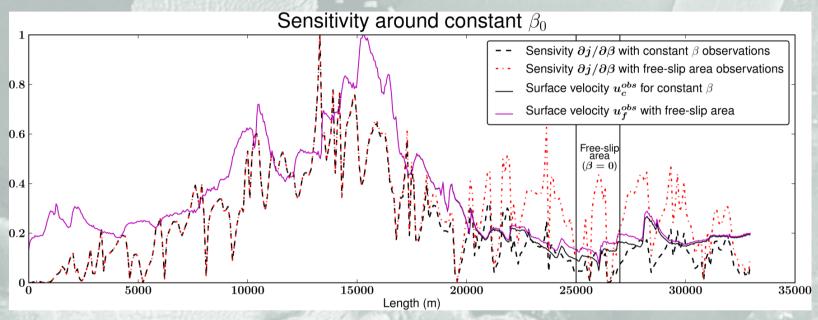
Generally unmeasurable

Goal:

- Sensitivity analysis: understand β modelling role
- Identification: infer the *bedrock-ice interaction* properties

Sensitivity to a free-slip area

Experiment 1: effect of a local free-slip on the sensitivity to friction



- Sensitivity correlated to the surface velocities (hence the topography)
- Local free-slip area (2km) large high sensitivity area (~10km)
 - \longrightarrow almost no effect on u_s
- Transmission of basal movement to the surface: **filtered** and **non-local**

Sensitivity to a free-slip area

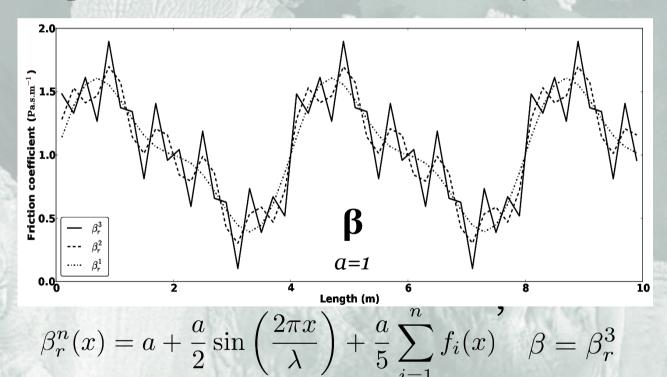
- Quasi-static sensitivities:
 - given a snapshot (surface & bedrock topography + surface velocities)
 - help to see beyond filtering and non-local
- Free-slip area:
 - possibly local in space and time (e.g. fluctuation of subglacial meltwater pressure)

Sensitivity analysis could allow to *detect momentary increase* in sliding rate (e.g. *« stick-slip »* phenomena)

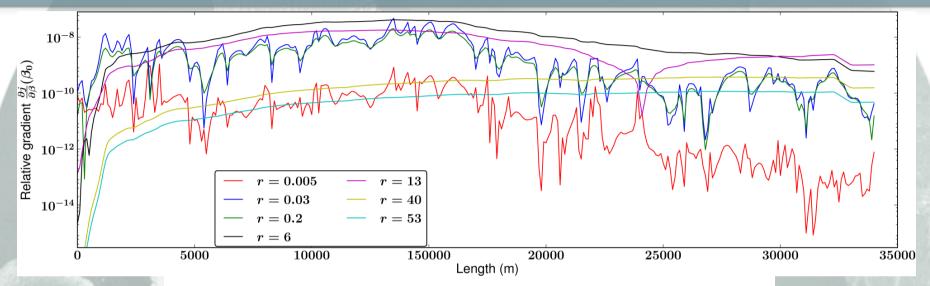
Sensitivity and slip ratio r

Experiment 2: effect of the slip ratio on the sensitivity to friction

- Slip ratio $r=\overline{u_b}/|\overline{u_s}-\overline{u_b}|$: balance between deformation and sliding
- Various frequencies in the friction coefficient β



Sensitivity and slip ratio r



Sensitivity to the friction coefficient $\boldsymbol{\beta}$ for various slip ratio \boldsymbol{r}

- Low slip ratio: r<0.01: high frequencies captured low absolute values
 - filtering effects

- High slip ratio: r>5
 low frequency information
 average behaviour only

Best situations to perform identification: intermediate sliding

Formulation of an incomplete adjoint

Recall: adjoint model

algorithmic differentiation of a fixed point type iterative routine (Stokes power-law): $y = \Phi(y, u)$

Reverse Accumulation (Griewank et al., 1993)

- 1) derivation of the computational graph (node by node, one node n_i per function value Φ)

- one adjoint quantity per node = $\frac{\partial \Phi}{\partial n_i}$ 2) compute the adjoint state in reverse order adjoint state = $\sum_{i} \frac{\partial \Phi}{\partial n_i}$ (chain formula)

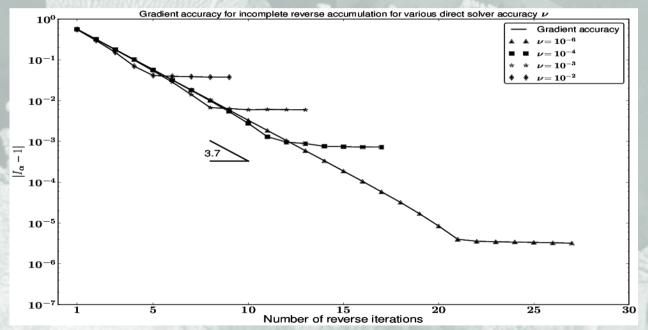
Corollary: Adjoint state precision = Direct state precision (~fixed point threshold) Christianson, 1992

Formulation of an incomplete adjoint

Idea: retain « some » of the $\sum_i \frac{\partial \Phi}{\partial n_i}$ to compute the adjoint state

from 1 (« self-adjoint ») to all (complete adjoint)

What is the precision of the resulting incomplete adjoint?



Adjoint precision adjustable a priori from data accuracy & direct solver precision

Experiment 3: Assess the limits of identifiability of the friction coefficient in Fourier space

- level of captured frequencies (in terms of thickness h)
- reconstructed amplitude

Setup:

- Synthetic data: 1% random noise
- Density: 1km (~1 ice thickness h) between each data point
- Realistic topography
- Non-linear friction law: $| au_b|^{m-1} au_b=eta u_b^ au$ with m=3
 - Comparison of exact adjoint and « self-adjoint » method

Slip ratio: r=0.005 (strong friction)

- Complete adjoint:

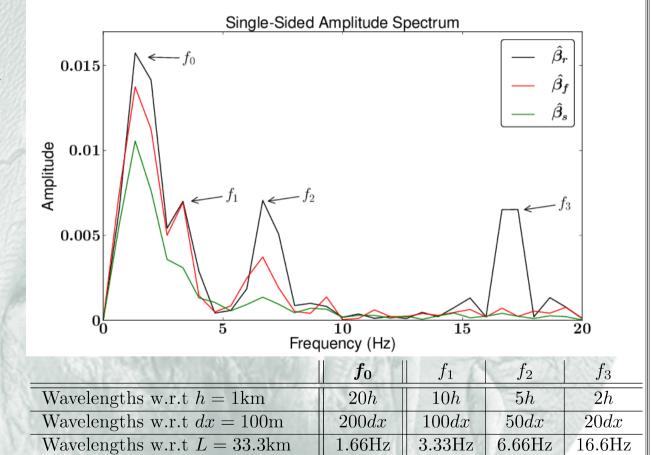
High frequencies captured Smaller amplitude

Filtering dominant

- « Self-adjoint »:

carrier frequency only

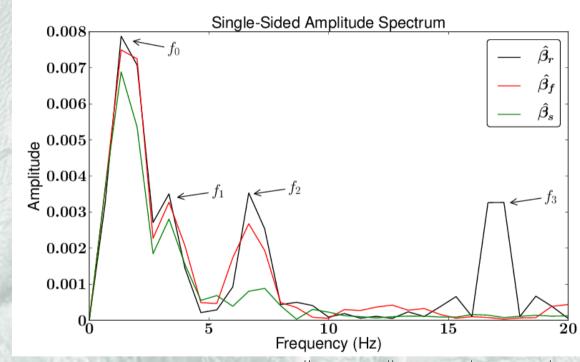
not robust at low slip ratio



Slip ratio: r=0.5 (intermediate sliding)

- Complete adjoint: accurate up to 5h wavelengths
- « Self-adjoint »:
 accurate up top
 10h wavelengths

Complete adjoint more accurate



	$ f_0 $	f_1	f_2	f_3
Wavelengths w.r.t $h = 1 \text{km}$	20h	10h	5h	2h
Wavelengths w.r.t $dx = 100$ m	200dx	100dx	50dx	20dx
Wavelengths w.r.t $L = 33.3$ km	1.66Hz	3.33Hz	6.66Hz	16.6Hz

Slip ratio: r=50 (rapid sliding)

- Complete adjoint:

Amplitude well represented High frequencies not captured

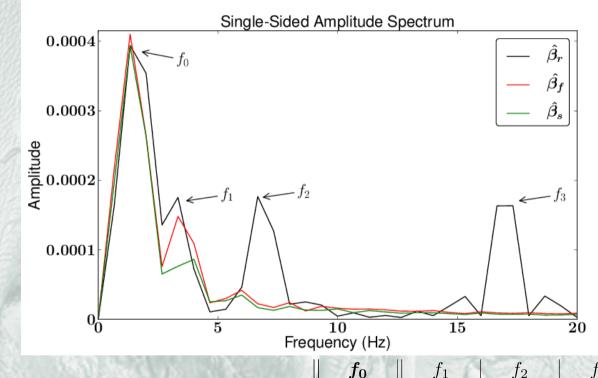
Non-local effects dominant

accurate up to 10h wavelengths

- « Self-adjoint »:

Only the carrier wave

accurate up to 20h wavelengths



 f_3 Wavelengths w.r.t h = 1 km2h20h10h5hWavelengths w.r.t dx = 100m 200dx100dx50dx20dxWavelengths w.r.t L = 33.3km 1.66Hz 3.33Hz 6.66Hz 16.6Hz

Results presented in Martin-Monnier, The Cryosphere, submitted

Overview

3) Basal sliding

- high frequency events captured (~2x thickness)
- detection of momentary basal slipperiness variation (« stick-slip »)

 Martin-Monnier, SIAM-SISC, submitted
- Adjustable incomplete adjoint (from data accuracy & direct solver precision)

Assessment of transmission of basal variability:

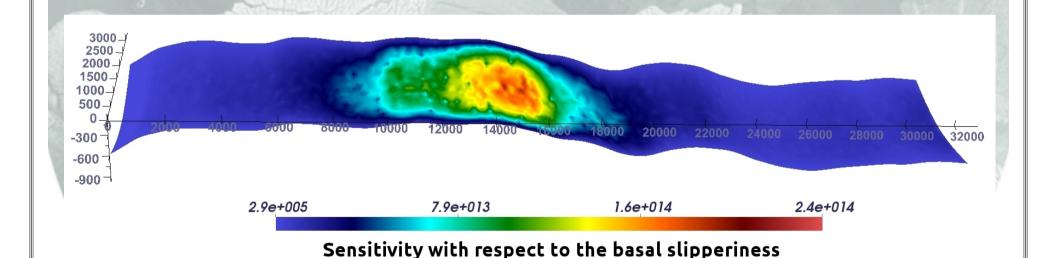
Friction	Strong	Intermediate	Low		
Slip ratio	Small	~unity	Higher		
Sensitivity	low	high	smooth		
Transmission of basal variability	filtered ~5h (approx. amplitude)	« optimal » ~5h	non-local ~10h		

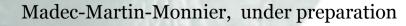
Martin-Monnier, The Cryosphere, submitted

Some perspectives

DassFlow-3D operational: tetrahedra, velocity-pressure formulation (mainly developed by R. Madec – Post-doc IMT, ANR AMAC & ADAGe 2009-2013)

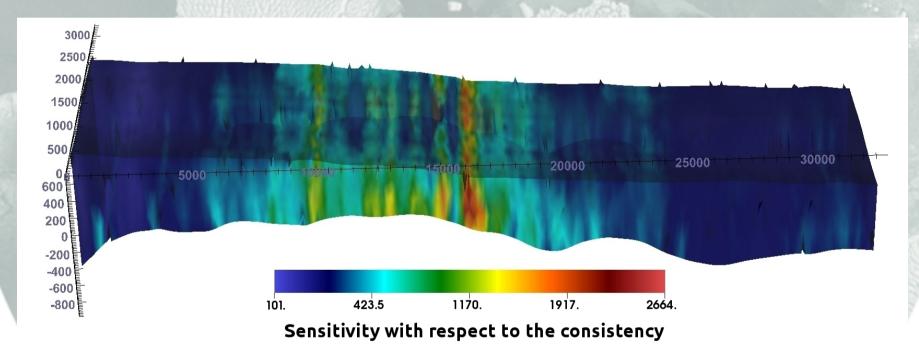
Available online open-source soon





Some perspectives

DassFlow-3D operational: tetrahedra, velocity-pressure formulation (mainly developed by R. Madec – Post-doc IMT, ANR AMAC & ADAGe 2009-2013) Available online open-source soon



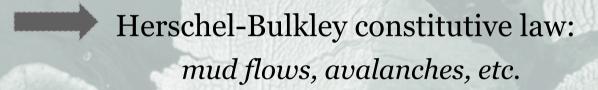
Nathan Martin

Madec-Martin-Monnier, under preparation

Some perspectives

• Introduce the Bingham threshold into LA algorithm (*a priori* suited for non-differentiable problem)

Glowinski and Wachs, 2011



• Unsteady adjoint formulation: moving domain (free surface) shape optimization problem

