
Chapter 1

Introduction

1.1 From the control of a dynamical system to large scale
data assimilation

The control theory aims to analyze systems which can be commanded. In other words, dynam-

ical systems which can be modified by a command (the control). The two classical objectives

are:

A) Act on the control in order to bring the system state to a final state given (if possible, and

potentially with constraints). It is a controllability problem.

B) Define a control u(t) such that a criteria j is minimal. The criteria j, also called the cost

functional, depends on the control and the state of the system. Potentially, the control must

satisfy constraints given. It is a optimal control problem
The present course addresses optimal control problems only (objective B)).

In a mathematical point of view, the systems considered here are differential equations:
Ordinary Differential Equation (ODE, dynamical systems) in Chapter 2, elliptic Partial Deriva-

tives Equations (PDEs, steady-state) in Chapter 3, and unsteady PDEs in Chapter 4 (parabolic

and hyperbolic). These classes of equations model a very wide range of systems both in en-

gineering and in academic researches. Let us cite the following applicative topics only: fluid

mechanics, geophysical flows, structural mechanics, micro-electronics, nano-technologies, bio-

logical systems, coupled multi-physics systems, etc.

The objective is either to stabilize the system in order to make it insensitive to perturba-

tion (related to objective A), see the course of automatism GMM5), or to determine optimal

solutions with respect to the given criteria j (objective B)).

Optimal control is a topic between the automatic engineering science and applied mathe-

matics.

Calculus of variations deals with the minimization of functionals (i.e. mappings from a set of

functions to R; functionals are often definite integrals involving functions and their derivatives).

Optimal control theory is somehow an extension of the calculus of variations: it is mathematical

optimization problems with an underlying model (the differential equation), and the goal is to

derive a control policy.
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Historically, optimal control appeared after the second world war, with applications in aero-
nautics (missile guidance etc).
A key point of the optimal control is the Pontryagin maximum principle (L. Pontryagin (blind)
russian mathematician (1908-1988)),which gives a necessary condition of optimality for an
ODE system. The condition becomes sufficient if the model is linear and the cost function is
quadratic: the Linear-Quadratic (LQ) case studied in Chapter 2.

In real-life problems, optimal control problems are often non-linear, thus the analytic ex-
pression of the optimal control we obtain in the Linear-Quadratic (LQ) case (Chapter 2), does
not apply anymore. Then, in view to solve a non-linear optimal control problems (i.e. compute
an optimal control u and the corresponding optimal trajectory xu), we use numerical methods to
solve the necessary first-order optimality conditions based on the so-called Hamiltonian system.

For Partial Derivatives Equations (PDE) systems (Chapter 3), the Pontryagin maximum
principle does not apply. Nevertheless one can obtain equations characterizing the optimal
solution: it is the optimality system which make introduce the adjoint equations.

Next, what is the link between optimal control of a PDEs system and data assimilation ?
Assimilation of data (measurements) into the system can be done using an optimal control
process simply by defining the criteria j to be minimized as the misfit between the computed
solution and the measurements (observations). Generally the latter are heterogeneous in space,
in time, and in nature. For real and complex applications, defining a ’good’ cost function can
be difficult since it requires to introduce some a-priori statistic errors, which define the metric
we work with.
Chapter 3 aims at deriving the optimality systems for elliptic PDEs (a-priori non-linear) and
focus on the computational aspects. A result of existence and uniqueness of the control is
presented in the linear-quadratic pde case. We present in detail how to solve numerically the
optimality system. The result is the identification of the input parameters which was unknown
(or known with uncertainties), and/or a better calibration of the model.

In Chapter 4, we extend the method to unsteady PDEs systems (either parabolic or hy-
perbolic). Calculations derived in these cases are more formal. We detail the computational
algorithms: 4D-var and its variants.
The 4D-var type methods are very CPU time consuming (10–100 times the CPU time of the
direct simulation), but they are able to greatly improve both the model accuracy and our own
understanding of the physical system.

Numerical simulation, based on a mathematical model, is a fundamental step for a large
range of industrial processes - conceptions - designs or physical - geophysical analysis - descrip-
tions - predictions. Numerical simulation replaces more and more (real) experiments since the
latter are costy. Experiments are often used for validation of the (virtual) numerical results.
Data assimilation is a quite recent science. In the future, one can bet it will be naturally
integrated in our concept of numerical simulation.
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Data assimilation is the science combining ”at best” the three knowledges of a system: the
model (mathematical equations), the observations - measurements of the reality and statistical
errors (errors of measurements mainly).

”Data assimilation” refers to two different (and complimentary) approaches:

1) a stochastic approach, filtering such as the Kalman’s filter (roughly, we calculate the Best
Linear Unbiased Estimate -BLUE- using algebric calculations) or the Ensemble Kalman Filter
(EnKF),

2) a variational approach based on the control theory (it is a more deterministic approach
even if one can mix both approaches). We minimize a cost function which measures the misfit
between the model output and the measurements.

Both approaches lead to the same estimate in the linear case (in the linear case only!). At
the end of Chapter 4, we show the equivalency between the (basic) Best Linear Unbiased Esti-
mate (BLUE) and the variational approach in a linear-quadratic case. This equivalency show
us how one may introduce the statistics of errors in the variational data assimilation processes,
even in non-linear cases.

Both approaches present similar difficulties if the direct dynamical model is non-linear and
with large dimensions; furthermore, we never really known the necessary a-priori errors statis-
tics...

The present course addresses only the variational data assimilation approach.

Let us cite the historical application: weather (atmosphere) prediction. The numerical
weather prediction centers developed operational 4D-var algorithms (see Chapter 4) since the
2000s approximatively. Forecasts have improved the last ten-fifteen years approximately in
particular because of the introduction of variational data assimilation into the complex dynam-
ical atmosphere models. Data assimilation allows to benefit from the global various observing
systems. In short, 4D-var approach has been and is a key point to improve greatly weather
forecasting at all scale and all over the world.
For complex models (multi-physics coupled, non-linear, multi-scales) like in meteorology, the
discrete unknowns number may be huge (eg. dozens of millions) and the number of observa-
tions available may be huge too (eg. dozens of millions). For such large scale problems, some
tricky and pseudo-empirical simplifications both of the algorithms and the physical systems are
proposed; it is the aim of the 4D-var incremental method presented at the end of Chapter 4.
The implementation of the adjoint equations in a computational software may be facilitated by
an pseudo-automatic process: the so-called automatic differentiation (or algorithmic differenti-
ation).
In case of a source-to-source differentiation approach, it consists to derive the source code
instructions one by one. We present the principles of the method in Chapter 6, and using
Tapenade [13]. Tapenade is an automatic differentiation software developed at INRIA France,
it is one of the few software doing the job efficiently. We use it for the computations presented
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in the present course (see Chapter 5).

In Chapter 5, we present examples of current research studies on the topic, with applications
in river hydraulics - floods, in glaciology (glaciers flows in Antarctica, Groenland etc), lavas etc.
These studies are led at Mathematics Institute of Toulouse (IMT) and INSA (GMM depart-
ment) by the author with collaborators. Computations have been generally performed by PhDs
students (eg. M. Honnorat, N. Martin), research engineers (eg. F. Couderc, R. Madec), and
postdoctoral researchers. Al these studies are done in close collaboration with colleagues from
fluid mechanics (eg. Fluid Mechanics Institute of Toulouse -IMFT-), satellite measurements
(LEGOS Toulouse, CNES), glaciologists (LGGE Grenoble) etc.

Some historical dates related to data assimilation.
The 4D-var methods are based on non-linear least-squares computations. Recall the least-
squares method is a standard method to approximate a solution of overdetermined systems
(more equations than unknowns), which is the typical configuration of data assimilation prob-
lems. Historically, the least-square method has been elaborated by J.C. Gauss (1777-1855) and
A.-M. Legrendre (1752-1833). J.C. Gauss, at 24 years old, calculated a (right) least-square
solution to predict an asteroid trajectory based on past observations !
In the 20th century, one can cite the Kalman’s filter which has been developed at NASA in
order to estimate trajectories of the Apollo program (years 1960’s). In the 2000th, variational
data assimilation methods (also called 4D-var) have been developed for operational forecast in
the large national numerical weather prediction centers (eg. Meteo-France, ECMWF etc).


