Conclusion
\(\displaystyle J(\underline{x}) ={1\over 2} \left(\underline{x} - \underline{x}^b\right)^T \underline{\underline B}^{-1} \left(\underline{x} - \underline{x}^b\right)+ {1\over 2} \left[\underline{y}^o - {\cal G}(\underline{x})\right]^T \underline{\underline R}^{-1}\left[\underline{y}^o - {\cal G}(\underline{x})\right]\)
Three examples were presented to illustrate the minimization of the cost function
Clock time estimation: no background, two correlated measurements
Hydraulic jump velocitiy estimation: incremental cost function
Tank parameter estimation: twin experiments