Chapitre 1

Espaces vectoriels – Applications linéaires

CORRIGÉS DES EXERCICES

1-2 Correction des exercices de la série 1-2

1-2.1 Exercice 1b - Somme directe - Application linéaire

- 1. Vérifions que F est un sous espace vectoriel de E:
 - F est non vide, en effet le polynôme défini par X-1 est factorisable par X-1et donc appartient à F.
 - P et P_1 étant deux élements quelconques de F et a un réel quelconque, on a : P = (X - 1)Q et $P_1 = (X - 1)Q_1$ où Q et Q_1 sont deux polynômes. Donc

$$P + aP_1 = (X - 1)Q + a(X - 1)Q_1 = (X - 1)(Q + aQ_1)$$

et donc $P + aP_1$ appartient à F.

2. Tout polynôme P de E s'écrit : P = (X - 1)Q + P(1). P est donc la somme d'un polynôme de F et d'un polynôme constant donc de $R_0[X]$. Ainsi

$$E = F + R_0[X]$$

Il reste à vérifier que la somme est directe c'est à dire que seul le polynôme nul est commun à F et à $R_0[X]$. Ce qui est évident (Seul le polynôme constant nul est factorisable par (X-1)).

Ainsi

$$E = F \oplus R_0[X]$$

3. Montrons d'abord que f est linéaire. Soient deux élements quelconques P et P_1 de E et a un réel quelconque.

$$f(P + aP_1) = ((P + aP_1)(1); (P + aP_1)'(1)) = (P(1); P'(1)) + a(P_1(1); P'_1(1))$$

Finalement:

$$f(P + aP_1) = f(P) + af(P_1)$$

Le noyau de f est l'ensemble des polynômes P tels que (P(1); P'(1)) = (0; 0)Ce sont les polynômes de F dont la dérivée s'annule en 1. C'est à dire factorisables par $(X-1)^2$. En effet, si l'on suppose que P=(X-1)Q on a : P'=(X-1)Q'+Q, et Q est donc factorisable par X-1, soit $P=(X-1)^2R$

On sait que la dimension de $\mathbb{R}_n[X]$ est égale à n+1.

Faisons le bilan, suivant les valeurs de n:

• Si n > 1, une base de Ker f est $\{(X-1)^2, (X-1)^3, \dots (X-1)^n\}$. Ker f est de dimension n-1. D'après le théorème du rang : $\dim Imf = 2$ donc $Imf = \mathbb{R}^2$

On munit $\mathbb{R}_n[X]$ de la base $\{1, (X-1), (X-1)^2, \dots (X-1)^n\}$ et \mathbb{R}^2 de la base canonique. La matrice de f est alors :

$$A = \left(\begin{array}{ccccc} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \end{array}\right)$$

• Si n = 1, $Ker f = \{0_E\}$. D'après le théorème du rang : $Im f = \mathbb{R}^2$ Si l'on munit $\mathbb{R}_1[X]$ de la base $\{1, (X - 1)\}$ et \mathbb{R}^2 de la base canonique. La matrice de f est alors :

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

• Si n = 0, $Ker f = \{0_E\}$. D'après le théorème du rang : Im f = Vect(1; 0). Si l'on munit $\mathbb{R}_0[X]$ de la base $\{1\}$ et \mathbb{R}^2 de la base canonique. La matrice de f est alors :

$$A = \left(\begin{array}{c} 1\\0 \end{array}\right)$$

1-2.2 Exercice 2b - Base d'un espace vectoriel

- 1. On a : $\mathbf{w} = \mathbf{u} + \mathbf{v}$. La famille $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ n'est donc pas libre.
- 2. $F = Vect \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, or d'après 1) $\mathbf{w} = \mathbf{u} + \mathbf{v}$, on peut donc enlever \mathbf{w} de la famille $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. La famille $\{\mathbf{u}, \mathbf{v}\}$ est donc génératrice de F.

De plus $\lambda \mathbf{u} + \mu \mathbf{v} = \mathbf{0}$ s'écrit : $(\lambda, -\lambda - \mu, \lambda + 2\mu) = (0, 0, 0)$,

ou encore $\{\lambda=0, -\lambda-\mu=0, \lambda+2\mu=0\}$ ce qui est équivalent à $\lambda=\mu=0$.

La famille $\{\mathbf{u}, \mathbf{v}\}$ est donc libre

La famille $\{\mathbf{u}, \mathbf{v}\}$ est donc une base de F.

3. G est un sous ensemble de \mathbb{R}^3 .

G est non vide, en effet $(0,0,0) \in G$

Soient λ et μ deux réels, (x,y,z) et (x',y',z') deux éléments de G

 $(x, y, z) \in G$ donc x + 2y + z = 0

 $(x', y', z') \in G \text{ donc } x' + 2y' + z' = 0$

On calcule $\lambda(x, y, z) + \mu(x', y', z') = (\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$

Et $(\lambda x + \mu x') + 2(\lambda y + \mu y') + (\lambda z + \mu z') = \lambda(x + 2y + z) + \mu(x' + 2y' + z') = 0$

Donc $\lambda(x, y, z) + \mu(x', y', z') \in G$

G est non vide et stable par combinaison linéaire. G est donc un s.e.v. de \mathbb{R}^3 .

4. Soit
$$(x, y, z) \in G$$
, on a : $x + 2y + z = 0$, ce qui équivaut à $z = -x - 2y$
On écrit : $(x, y, z) = (x, y, -x - 2y) = x(1, 0, -1) + y(0, 1, -2)$

Les vecteurs $\mathbf{a} = (1, 0, -1)$ et $\mathbf{b} = (0, 1, -2)$ engendrent donc G

La famille $\{a, b\}$ est libre : on peut le montrer en utilisant la même méthode que pour la question 1), ou alors, plus simplement, dans le cas de deux vecteurs : la famille $\{a, b\}$ est libre car les coordonnées du vecteur \mathbf{a} ne sont pas proportionnelles à celles de \mathbf{b} .

La famille $\{a, b\}$ est donc une base de G et dim G = 2

5. Soit $\{\mathbf{u}, \mathbf{v}\}$ la base de F définie au 2)

$$\mathbf{u} = (1, -1, 1)$$
 et $1 + 2 \times (-1) + 1 = 0$ donc $\mathbf{u} \in G$

$$\mathbf{v} = (1, -1, 1)$$
 et $0 + 2 \times 1 - 2 = 0$ donc $\mathbf{v} \in G$

Donc toute combinaison linéaire des vecteurs ${\bf u}$ et ${\bf v}$ appartient à G, et donc $F\subset G$ On vérifie de même :

Soit $\{a, b\}$ la base de G définie au 4)

$$\mathbf{a} = (1, 0, -1) = \mathbf{u} - \mathbf{v} \text{ donc } \mathbf{a} \in F$$

$$\mathbf{b} = (0, 1, -2) = -\mathbf{v} \text{ donc } \mathbf{b} \in F$$

Donc toute combinaison linéaire des vecteurs \mathbf{a} et \mathbf{b} appartient à F, et donc $G \subset F$ On a montré $F \subset G$ et $G \subset F$ donc G = F

Note : les espaces F et G étant de dimension 2, il suffit de prouver que $F \subset G$ pour prouver l'égalité.

1-2.3 Exercice 3b - Matrice d'une application linéaire

- 1. Il faut prouver que quels que soient $\mathbf{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\mathbf{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, éléments de \mathbb{R}^3 et quel que soit le réel μ : $f(\mu \mathbf{u} + \mathbf{v}) = \mu f(\mathbf{u}) + f(\mathbf{v})$. $\mu \mathbf{u} + \mathbf{v} \text{ a pour coordonnées } \begin{pmatrix} \mu x + x' \\ \mu y + y' \\ \mu z + z' \end{pmatrix}$
- On appelle $\begin{pmatrix} X \\ Y \end{pmatrix}$ les coordonnées de $f(\mu \mathbf{u} + \mathbf{v})$ dans la base canonique $\{\varepsilon_1, \varepsilon_2\}$ de \mathbb{R}^2 .

On a :
$$\begin{cases} X = \lambda(\mu x + x') + \mu y + y' \\ Y = \mu y + y' + \lambda(\mu z + z') \end{cases}$$
donc :
$$\begin{cases} X = \lambda \mu x + \mu y + \lambda x' + y' \\ Y = \mu y + \lambda \mu z + y' + \lambda z' \end{cases}$$

• On appelle $\begin{pmatrix} X' \\ Y' \end{pmatrix}$ les coordonnées de $\mu f(\mathbf{u}) + f(\mathbf{v})$ dans la base canonique $\{\varepsilon_1, \varepsilon_2\}$ de \mathbb{R}^2 .

On a :
$$\left\{ \begin{array}{l} X = \mu(\lambda x + y) + (\lambda x' + y') \\ Y = \mu(y + \lambda z) + (y' + \lambda z') \end{array} \right. \text{ donc} : \left\{ \begin{array}{l} X' = \lambda \mu x + \mu y + \lambda x' + y' \\ Y' = \mu y + \lambda \mu z + y' + \lambda z' \end{array} \right.$$
 Donc

$$f(\mu \mathbf{u} + \mathbf{v}) = \mu f(\mathbf{u}) + f(\mathbf{v}).$$

f est donc une application linéaire.

2. On exprime $f(\mathbf{e}_1), f(\mathbf{e}_2)$ et $f(\mathbf{e}_3)$ dans base canonique $\{\varepsilon_1, \varepsilon_2\}$.

On obtient:
$$f(\mathbf{e}_1) \begin{pmatrix} \lambda \\ 0 \end{pmatrix}$$
, $f(\mathbf{e}_2) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $f(\mathbf{e}_3) \begin{pmatrix} 0 \\ \lambda \end{pmatrix}$

La matrice A de f dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 est donc :

$$A = \left(\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & 1 & \lambda \end{array}\right)$$

3.a. L'espace vectoriel \mathbb{R}^3 étant de dimension 3, tout système libre de trois vecteurs est une base de \mathbb{R}^3 . Il faut donc vérifier que $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ est une famille libre.

Supposons : $\alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w} = \mathbf{0}$

On obtient le système :

$$\begin{cases} \alpha + \beta = 0 \\ \alpha + 2\beta + \gamma = 0 \\ -\gamma = 0 \end{cases}$$

qui admet comme solution unique : $\alpha = \beta = \gamma = 0$

Donc $\{\mathbf{u},\mathbf{v},\mathbf{w}\}$ est une base de \mathbb{R}^3

- 3.b. Même raisonnement que pour le 3.a. \mathbb{R}^2 est de dimension 2, $\{i, j\}$ est une base de \mathbb{R}^2 si et seulement si c'est une famille libre. Il suffit de vérifier, dans ce cas, que les coordonnées de \mathbf{i} et \mathbf{j} ne sont pas proportionnelles.
- 3.c. Il faut calculer les coordonnées de $f(\mathbf{u}), f(\mathbf{v}), f(\mathbf{w})$ dans la base canonique de \mathbb{R}^2 puis dans la base $\{\mathbf{i}, \mathbf{j}\}$.

Dans la base canonique de \mathbb{R}^2 ,

$$f(\mathbf{u}) = f(\mathbf{e}_1) + f(\mathbf{e}_2) \text{ donc } f(\mathbf{u}) \text{ a pour coordonnées } \begin{pmatrix} \lambda + 1 \\ 1 \end{pmatrix}$$
$$f(\mathbf{v}) = f(\mathbf{e}_1) + 2f(\mathbf{e}_2) \text{ donc } f(\mathbf{v}) \text{ a pour coordonnées } \begin{pmatrix} \lambda + 2 \\ 2 \end{pmatrix}$$
$$f(\mathbf{w}) = f(\mathbf{e}_2) - f(\mathbf{e}_3) \text{ donc } f(\mathbf{w}) \text{ a pour coordonnées } \begin{pmatrix} 1 \\ 1 - \lambda \end{pmatrix}$$

Autrement dit

$$\begin{cases} f(\mathbf{u}) = (\lambda + 1)\varepsilon_1 + \varepsilon_2 \\ f(\mathbf{v}) = (\lambda + 2)\varepsilon_1 + 2\varepsilon_2 \\ f(\mathbf{u}) = \varepsilon_1 + (1 - \lambda)\varepsilon_2 \end{cases}$$

On exprime ensuite ces vecteurs dans la base $\{i, j\}$. Pour cela on résoud le système :

$$\begin{cases} \mathbf{i} = \varepsilon_1 + \varepsilon_2 \\ \mathbf{j} = \varepsilon_1 - \varepsilon_2 \end{cases}$$

On obtient:

$$\begin{cases} \varepsilon_1 = \frac{1}{2}(\mathbf{i} + \mathbf{j}) \\ \varepsilon_2 = \frac{1}{2}(\mathbf{i} - \mathbf{j}) \end{cases}$$

On remplace ε_1 et ε_2 par ces valeurs dans les expressions de $f(\mathbf{u}), f(\mathbf{v}), f(\mathbf{w})$. On obtient finalement :

$$\begin{cases} f(\mathbf{u}) = (1 + \frac{\lambda}{2})\mathbf{i} + \frac{\lambda}{2}\mathbf{j} \\ f(\mathbf{v}) = (2 + \frac{\lambda}{2})\mathbf{i} + \frac{\lambda}{2}\mathbf{j} \\ f(\mathbf{u}) = (1 - \frac{\lambda}{2})\mathbf{i} + \frac{\lambda}{2}\mathbf{j} \end{cases}$$

La matrice de f dans les bases T, U. est donc :

$$\widetilde{A} = \begin{pmatrix} 1 + \frac{\lambda}{2} & 2 + \frac{\lambda}{2} & 1 - \frac{\lambda}{2} \\ \frac{\lambda}{2} & \frac{\lambda}{2} & \frac{\lambda}{2} \end{pmatrix}$$

1-2.4 Exercice 4b - Image et noyau d'une application

Par définition de la matrice de f:

$$f(\mathbf{e}_1)$$
 $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$; $f(\mathbf{e}_2)$ $\begin{pmatrix} 1\\0\\3 \end{pmatrix}$; $f(\mathbf{e}_3)$ $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$

Pour tout vecteur $\mathbf{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$; $f(\mathbf{u})$ a pour coordonnées : $\begin{pmatrix} x+y+z \\ 2x+z \\ x+3y+2z \end{pmatrix}$

•
$$\mathbf{u} \in \operatorname{Ker} f \Leftrightarrow f(\mathbf{u}) = \mathbf{0} \Leftrightarrow \left\{ \begin{array}{l} x + y + z = 0 \\ 2x + z = 0 \\ x + 3y + 2z = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = x \\ y = x \\ z = -2x \end{array} \right.$$

donc
$$Ker f = Vect \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \right\}$$

•
$$Im f = Vect \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}; \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\}$$
Or la famille $\left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}; \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\}$ est liée

$$\operatorname{donc}\, \mathit{Im}\, f = \mathit{Vect}\left\{\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right); \left(\begin{array}{c} 1 \\ 0 \\ 3 \end{array}\right)\right\}$$

Appelons $\widetilde{\mathbf{e}}_1, \widetilde{\mathbf{e}}_2, \widetilde{\mathbf{e}}_3$ respectivement les vecteurs : $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$; $\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$; $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$

 $f(\widetilde{\mathbf{e}}_1)$ a pour coordonnées $\begin{pmatrix} 4\\3\\9 \end{pmatrix}$ dans la base canonique,

et
$$\begin{pmatrix} 4\\3\\9 \end{pmatrix} = a \begin{pmatrix} 1\\2\\1 \end{pmatrix} + b \begin{pmatrix} 1\\0\\3 \end{pmatrix} + c \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$
 avec $a = \frac{3}{2}; b = \frac{5}{2}; c = 0$

 $f(\widetilde{\mathbf{e}}_2)$ a pour coordonnées $\begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix}$ dans la base canonique,

$$\operatorname{et} \begin{pmatrix} 4 \\ 5 \\ 7 \end{pmatrix} = a \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \text{ avec } a = \frac{5}{2}; b = \frac{3}{2}; c = 0$$

 $f(\widetilde{\mathbf{e}}_3)$ a pour coordonnées $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ dans la base canonique, et $f(\widetilde{\mathbf{e}}_3) = 0.\widetilde{\mathbf{e}}_1 + 0.\widetilde{\mathbf{e}}_2 + 0.\widetilde{\mathbf{e}}_3$

Dans la base $\{\widetilde{\mathbf{e}}_1, \widetilde{\mathbf{e}}_2, \widetilde{\mathbf{e}}_3\}$ la matrice de f est :

$$\left(\begin{array}{ccc}
\frac{3}{2} & \frac{5}{2} & 0 \\
\frac{5}{2} & \frac{3}{2} & 0 \\
0 & 0 & 0
\end{array}\right)$$