EXERCICE 1.2 Pluie et ondes de crue

On considère une portion de rivière de longueur L drainant un bassin versant soumis à une pluie uniforme représentée par une fonction P(t). On suppose que la hauteur d'eau h(x,t) de la rivière est régie par le modèle

$$\frac{\partial h}{\partial t} + U_0 \frac{\partial h}{\partial x} = P \tag{1}$$

où U_0 est une constante positive. On suppose que la hauteur d'eau en amont est constante et donnée par la condition aux limites $h(0,t) = h_0$. On s'intéresse alors à la hauteur d'eau $h_e(t) = h(L,t)$ en aval de la portion de rivière en fonction du régime de pluie P(t).

- 1) Calculer et tracer la solution stationnaire $h(x,t) = h_s(x)$ obtenue pour une pluie constante $P(t) = P_0$. On pourra noter $\gamma = P_0/U_0$.
- 2) On suppose qu'à l'instant initial t=0 le profil de hauteur d'eau est la solution stationnaire $h(x,0)=h_s(x)$ pour $x\in[0,L]$. On suppose que l'intensité de pluie est nulle pour $t\geq 0$. Monter que $h_e(t)=h_0$ pour $t\geq T$ avec $T=L/U_0$.
- 3) Tracer dans le plan (x,t) le lieu des points pour lesquels l'écoulement est uniforme.
- 4) Calculer et tracer l'évolution de la hauteur d'eau $h_e(t)$ en fonction du temps.
- 5) Calculer et tracer à plusieurs instants le profil de hauteur d'eau h(x,t).
- 6) On suppose maintenant qu'à l'instant initial t=0 la hauteur d'eau est uniforme et égale à $h(x,t)=h_0$ pour $x\in[0,L]$. On suppose une intensité de pluie constante $P(t)=P_0$ pour $t\geq 0$. Calculer et tracer l'évolution de la hauteur d'eau $h_e(t)$ en fonction du temps.
- 7) Calculer et tracer à plusieurs instants le profil de hauteur d'eau h(x,t).

Corrigé page 2

Corrigé 1.2 Pluie et ondes de crue

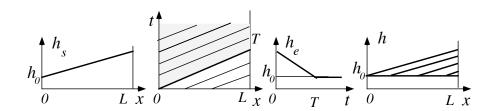


FIGURE 1 – Vidange de la rivière a) $h_s(x)$, b) Région uniforme et droites caractéristiques, c) $h_e(t)$, d) h(x,t).

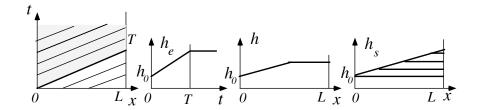


FIGURE 2 – Remplissage de la rivière a) droites caractéristiques, b) $h_e(t)$, c) h(x,t), d) $h_s(x)$ et h(x,t).

1) La solution de l'équation $U_0 h'_s(x) = P_0$ avec la condition $h_s(0) = h_0$ est $h_s(x) = h_0 + \gamma x$ avec $\gamma = P_0/U_0$. Le profil $h_s(x)$ est linéaire. 2)Les caractéristiques de ce modèle sont des droites d'équation $x = a + U_0 t$ si a désigne l'abscisse de l'intersection avec l'intervalle [0,L] de l'axe des x ou $x=U_0\left(t-\tau\right)$ si τ désigne l'ordonnée de l'intersection avec l'axe des t. Les droites caractéristiques issues du demi-axe des temps $t \geq 0$ coupent la droite x=L à partir du temps $T=L/U_0$. Comme h est un invariant de Riemann le long des caractéristiques et que $h(0,t) = h_0$ pour $t \ge 0$ on a $h(L,t) = h_0$ pour $t \ge T$. 3) La région $t \geq 0$ délimitée par la droite caractéristique $x = U_0 t$ est uniforme avec $h(x,t) = h_0$. 4) Pour $t \leq T$, la caractéristique passant par le point (L,t) du plan (x,t) coupe l'axe des x en $a = L - U_0 t$. La condition initiale est égale à $h_s(a) = h_0 + \gamma a$ en ce point. On a donc $h_e(t) = h(x,t) = h_0 + \gamma L - \gamma U_0 t = h_0 + \gamma L - P_0 t$ pour $t \in [0,T]$. La hauteur $h_e(t)$ décroît linéairement à partir de la valeur $h_s(L)$ pour stagner à la valeur h_0 au-delà de t = T. 5)Pour $x \le U_0 t$, on a vu que $h(x,t) = h_0$. Pour $x \ge U_0 t$, la droite caractéristique passant par (x,t) coupe l'axe des x en $a=x-U_0t$, ce qui entraı̂ne $h(x,t)=h_0+\gamma\,x-P_0t$. La solution h(x,t) est égale à $h_s(x-U_0t)$ pour $x \ge U_0t$ et égale à h_0 sinon. 6)Les droites caractéristiques sont les mêmes que pour le cas P=0, mais h n'est plus qu'une fonction de Riemann vérifiant $\left(\frac{dh}{dt}\right)_{\mathcal{C}} = P_0$. Pour $t \leq T$, l'intégration de la fonction de Riemann le long de la droite caractéristique passant par (L,t) conduit à $h_e(t) = h(L,t) = h_0 + P_0 t$. Pour $t \geq T$, la droite caractéristique coupe l'axe des t en $(0, t - L/U_0)$ et l'intégration de la fonction de Riemann conduit à $h_e(t) = h(L,t) = h_0 + P_0 L/U_0 = h_0 + \gamma L$. Le profil $h_e(t)$ croît linéairement de h_0 à $h_0 + \gamma L = h_0 + P_0 T$ sur l'intervalle [0, T] puis reste constant. 7) Pour $x \geq U_0 t$, l'intégration de la fonction de Riemann conduit à $h(x,t) = h_0 + P_0 t$. Pour $x \leq U_0 t$, la droite caractéristique passant pas (x,t) coupe l'axe des t en $(0,t-x/U_0)$. L'intégration de la fonction de Riemann conduit à $h(x,t) = h_0 + P_0 x/U_0 = h_0 + \gamma x$. La solution h(x,t) part de h_0 , croît linéairement avec le temps jusqu'à atteindre la valeur du profil stationnaire $h_s(t)$. Le point où cette valeur est atteinte se déplace à la vitesse U_0 .